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Abstract— Design-time strategies are suited only for 
mapping predefined set of applications and thus cannot 
predict dynamic behavior. This dynamism demands 
run-time mapping of application tasks to maintain a 
critical balance between performance and resource 
optimization. This paper proposes a run-time heuristic 
that intelligently distributes the application tasks among 
multiple processors taking communication overhead, 
computation load and resource utilization in 
consideration. 
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I. INTRODUCTION 
System-on-Chip (SoC) design is experiencing a radical 

shift from uni-processor architecture to multi-processor 
architecture in order to adjust with the ever increasing 
demand for high performance. The rising complexity of 
real-life applications cannot be addressed by simply trying 
to make single-core processors run faster, instead it requires 
multiple processors, connected with a Network-on-Chip 
(NoC), which can cohesively communicate and provide 
increased concurrency [1].  

The challenge is to map parallelized tasks of an 
application onto MPSoC platform, which entails a judicious 
mechanism of mapping these tasks on various processing 
elements (PEs), either at design-time or at run-time. 
Numerous design-time mapping techniques have been 
developed but they are limited to predefined set of 
applications and are unaware of run-time resource 
management [2], whereas run-time mapping techniques can 
be employed to large number of applications and 
incorporate run-time resource management. In [3], 
Holzenspies et al. propose a run-time strategy for mapping 
inherently parallel streaming applications on MPSoC. Singh 
et al. [4] describe a communication aware run-time mapping 
heuristic for MPSoC platforms accommodating multiple 
tasks on a single PE. The heuristic tries to minimize the 
communication overhead between two highly 
communicating tasks by mapping them on the same PE. 
However, existing heuristics does not attempt to balance the 
computation load on each PE utilized for mapping and also 
involves a restricted approach for minimizing 
communication overhead.  

We present a run-time task mapping technique that 
reduces computation load variance and delineates 
substantial performance improvements along with efficient 

resource utilization. 
II. PROPOSED ALGORITHM 

Our technique performs pre-processing of the application 
graph before actual mapping is done in order to reduce the 
communication overhead and improve the load balancing on 
various platform PEs, taking available memory on PEs into 
consideration. 

Application Model. An application is modeled as a set of 
communicating parallel processes represented as a task 
graph. The task graph is denoted as a directed graph ATG = 
(T, E), where T is a set of application tasks and E is the set 
of all edges in the application, connecting the tasks and 
representing their communication as shown in Figure 1. A 
task ti ∈ T is represented as (tid, tcomp), where tid is the task 
identifier and tcomp is the task computation load in cycles. An 
edge ei ∈ E connecting the two tasks contains 
zcommunication information (tcomm) between the tasks. tcomm 
represents the number of cycles taken for transferring a 
single token when full channel bandwidth is available.  

Platform Model. The MPSoC architecture is a graph AG 
= (P, C), where P is the set of PEs identified by its identifier 
pid and C represents the on chip communication channels for 
interconnecting the PEs. The PEs are connected in 4×4 
mesh topology by a NoC. Among the available PEs, one is 
used as Manager Processor that is responsible for managing 
task operations and resources usage, including run-time 
management of task loads. 

Mapping. Task mapping is represented by function mpg: 
ti ∈ T → pi ∈ P, which maps each task of the application on 
the platform PEs. 

A. Pre-Processing 
The technique tries to minimize communication latencies 
among various tasks of the application while simultaneously 
trying to balance the processing load on various PEs. The 
scheme starts by targeting the communication intensive 
edges in the application and attempts to merge these highly 
communicating tasks on the same PE. The merging 
operation takes place only if memory constraint of the 
involved PE is satisfied, i.e., the PE must have sufficient 
memory to accommodate both the tasks and shared memory 
for their local communication. The shared memory is 
required by communication data on the edge of the 
connecting tasks. The proposed strategy forms a global 
approach as complete application graph is seen in entirety 
for removing communication bottlenecks, in contrast to 
mapping technique in [4] where merging of communicating 
tasks takes place during execution. The main purpose of 
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Figure 1: Execution Trace of Application Graph A 

pre-processing is to remove any bottleneck that may arise 
due to overhead of transferring data among communicating 
tasks which can be understood by examining the execution 
trace of an application graph. In Figure 1, execution trace of 
application graph A is shown, where pi represents the trace 
for computation time of each task ti ∈ Ti and qi represents 
the trace for communication time of each edge ei ∈ Ei. This 
representation expresses the available parallelism that can 
be exploited to achieve high performance by removing the 
bottlenecks, for example, edge e1 appears to be the main 
bottleneck. If the communicating tasks of edge e1 are 
merged together on a single PE, then e1 no longer remains 
the active bottleneck of the system and the whole execution 
trace will shrink leading to faster execution. The same 
process is repeated with next highest bottlenecked edge till a 
processor becomes the bottleneck. 

During pre-processing, once the processor becomes the 
bottleneck, resource optimization is carried out by merging 
the tasks with minimum computation load such that after 
merging, the communication overhead or computation load 
does not overshoot the computation bottleneck determined 
in the earlier step. This step not only enhances resource 
utilization but also tries to balance the computation load 
among several PEs by bringing the computation load of 
each PE as close as possible to computation bottleneck. 

B. Mapping 
The optimized application graph thus obtained by the 

pre-processing can be mapped using a run-time mapping 
heuristic. Nearest Neighbor heuristic proposed in [5] has 
been employed where communicating tasks are mapped on 
the neighboring PEs. 

III. EXPERIMENTS AND RESULTS 
 

    
 

Figure 2: Computation Load Variance for Apps with 5, 10 & 15 Tasks  

A  Model-Sim simulator same as used in [4] has been 
adopted for performing experiments in co-simulation. 

We have evaluated scenarios with random, pipeline & tree 
like streaming applications having 5, 10 and 15 tasks. 
Platform PEs are homogeneous processors. 

We have measured execution time, resource utilization, 
energy consumption and computation load variance for 
mapping applications onto the platform. The total execution 
time includes time for pre-processing, mapping, 
configuration, processing and communication. The result 
obtained with our approach is compared with the Smart 
Nearest Neighbor (SNN) heuristic proposed in [4]. Figure 2 
(a) compares the overall execution time. Resource utilization 
is measured as the percentage usage of PEs in the mapping. 
Figure 2(b) shows saving in resource usage for applications 
with various number of tasks. Energy consumption is 
measured as sum of communication and computation energy 
[6]. Figure 2(c) compares average energy consumption. 
Computation Load Variance represents the probability of 
computation load on each PE. Figure 3 shows the average 
computation load variance for different applications with 10 
and 15 tasks. 

IV. CONCLUSIONS 
   This paper describes a new mapping strategy, where 
placement for a task is found to balance the computation 
load on different PEs and to reduce communication 
overhead in the multi-tasking MPSoC platform. The 
improvements are clearly enunciated in the experiments and 
results section.  
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Figure 3: Computation Load Variance for App with 10 & 15 Tasks 
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