

Samarth Kaushik, Amit Kumar Singh, Thambipillai Srikanthan

Centre for High Performance Embedded Systems, Nanyang Technological University, Singapore
{samarth2, amit0011, astsrikan}@ ntu.edu.sg

Abstract— Design-time strategies are suited only for
mapping predefined set of applications and thus cannot
predict dynamic behavior. This dynamism demands
run-time mapping of application tasks to maintain a
critical balance between performance and resource
optimization. This paper proposes a run-time heuristic
that intelligently distributes the application tasks among
multiple processors taking communication overhead,
computation load and resource utilization in
consideration.

Keywords: Multiprocessor System-on-Chip (MPSoC),
Network-on-Chip (NoC), Mapping Algorithms.

I. INTRODUCTION
System-on-Chip (SoC) design is experiencing a radical

shift from uni-processor architecture to multi-processor
architecture in order to adjust with the ever increasing
demand for high performance. The rising complexity of
real-life applications cannot be addressed by simply trying
to make single-core processors run faster, instead it requires
multiple processors, connected with a Network-on-Chip
(NoC), which can cohesively communicate and provide
increased concurrency [1].

The challenge is to map parallelized tasks of an
application onto MPSoC platform, which entails a judicious
mechanism of mapping these tasks on various processing
elements (PEs), either at design-time or at run-time.
Numerous design-time mapping techniques have been
developed but they are limited to predefined set of
applications and are unaware of run-time resource
management [2], whereas run-time mapping techniques can
be employed to large number of applications and
incorporate run-time resource management. In [3],
Holzenspies et al. propose a run-time strategy for mapping
inherently parallel streaming applications on MPSoC. Singh
et al. [4] describe a communication aware run-time mapping
heuristic for MPSoC platforms accommodating multiple
tasks on a single PE. The heuristic tries to minimize the
communication overhead between two highly
communicating tasks by mapping them on the same PE.
However, existing heuristics does not attempt to balance the
computation load on each PE utilized for mapping and also
involves a restricted approach for minimizing
communication overhead.

We present a run-time task mapping technique that
reduces computation load variance and delineates
substantial performance improvements along with efficient

resource utilization.
II. PROPOSED ALGORITHM

Our technique performs pre-processing of the application
graph before actual mapping is done in order to reduce the
communication overhead and improve the load balancing on
various platform PEs, taking available memory on PEs into
consideration.

Application Model. An application is modeled as a set of
communicating parallel processes represented as a task
graph. The task graph is denoted as a directed graph ATG =
(T, E), where T is a set of application tasks and E is the set
of all edges in the application, connecting the tasks and
representing their communication as shown in Figure 1. A
task ti ∈ T is represented as (tid, tcomp), where tid is the task
identifier and tcomp is the task computation load in cycles. An
edge ei ∈ E connecting the two tasks contains
zcommunication information (tcomm) between the tasks. tcomm
represents the number of cycles taken for transferring a
single token when full channel bandwidth is available.

Platform Model. The MPSoC architecture is a graph AG
= (P, C), where P is the set of PEs identified by its identifier
pid and C represents the on chip communication channels for
interconnecting the PEs. The PEs are connected in 4×4
mesh topology by a NoC. Among the available PEs, one is
used as Manager Processor that is responsible for managing
task operations and resources usage, including run-time
management of task loads.

Mapping. Task mapping is represented by function mpg:
ti ∈ T → pi ∈ P, which maps each task of the application on
the platform PEs.

A. Pre-Processing
The technique tries to minimize communication latencies
among various tasks of the application while simultaneously
trying to balance the processing load on various PEs. The
scheme starts by targeting the communication intensive
edges in the application and attempts to merge these highly
communicating tasks on the same PE. The merging
operation takes place only if memory constraint of the
involved PE is satisfied, i.e., the PE must have sufficient
memory to accommodate both the tasks and shared memory
for their local communication. The shared memory is
required by communication data on the edge of the
connecting tasks. The proposed strategy forms a global
approach as complete application graph is seen in entirety
for removing communication bottlenecks, in contrast to
mapping technique in [4] where merging of communicating
tasks takes place during execution. The main purpose of

Preprocessing-based Run-time Mapping of Applications on NoC-based MPSoCs

2011 IEEE Computer Society Annual Symposium on VLSI

978-0-7695-4447-2/11 $26.00 © 2011 IEEE

DOI 10.1109/ISVLSI.2011.43

335

2011 IEEE Computer Society Annual Symposium on VLSI

978-0-7695-4447-2/11 $26.00 © 2011 IEEE

DOI 10.1109/ISVLSI.2011.43

337

Figure 1: Execution Trace of Application Graph A

pre-processing is to remove any bottleneck that may arise
due to overhead of transferring data among communicating
tasks which can be understood by examining the execution
trace of an application graph. In Figure 1, execution trace of
application graph A is shown, where pi represents the trace
for computation time of each task ti ∈ Ti and qi represents
the trace for communication time of each edge ei ∈ Ei. This
representation expresses the available parallelism that can
be exploited to achieve high performance by removing the
bottlenecks, for example, edge e1 appears to be the main
bottleneck. If the communicating tasks of edge e1 are
merged together on a single PE, then e1 no longer remains
the active bottleneck of the system and the whole execution
trace will shrink leading to faster execution. The same
process is repeated with next highest bottlenecked edge till a
processor becomes the bottleneck.

During pre-processing, once the processor becomes the
bottleneck, resource optimization is carried out by merging
the tasks with minimum computation load such that after
merging, the communication overhead or computation load
does not overshoot the computation bottleneck determined
in the earlier step. This step not only enhances resource
utilization but also tries to balance the computation load
among several PEs by bringing the computation load of
each PE as close as possible to computation bottleneck.

B. Mapping
The optimized application graph thus obtained by the

pre-processing can be mapped using a run-time mapping
heuristic. Nearest Neighbor heuristic proposed in [5] has
been employed where communicating tasks are mapped on
the neighboring PEs.

III. EXPERIMENTS AND RESULTS

Figure 2: Computation Load Variance for Apps with 5, 10 & 15 Tasks

A Model-Sim simulator same as used in [4] has been
adopted for performing experiments in co-simulation.

We have evaluated scenarios with random, pipeline & tree
like streaming applications having 5, 10 and 15 tasks.
Platform PEs are homogeneous processors.

We have measured execution time, resource utilization,
energy consumption and computation load variance for
mapping applications onto the platform. The total execution
time includes time for pre-processing, mapping,
configuration, processing and communication. The result
obtained with our approach is compared with the Smart
Nearest Neighbor (SNN) heuristic proposed in [4]. Figure 2
(a) compares the overall execution time. Resource utilization
is measured as the percentage usage of PEs in the mapping.
Figure 2(b) shows saving in resource usage for applications
with various number of tasks. Energy consumption is
measured as sum of communication and computation energy
[6]. Figure 2(c) compares average energy consumption.
Computation Load Variance represents the probability of
computation load on each PE. Figure 3 shows the average
computation load variance for different applications with 10
and 15 tasks.

IV. CONCLUSIONS
 This paper describes a new mapping strategy, where
placement for a task is found to balance the computation
load on different PEs and to reduce communication
overhead in the multi-tasking MPSoC platform. The
improvements are clearly enunciated in the experiments and
results section.

REFERENCES
[1] A. Jerraya et al., Guest editors’ introduction: multiprocessor systems-

on-chips, Computer 38 (7) (2005) 36–40.
[2] L.-Y. Lin et al., Communication-driven task binding for

multiprocessor with latency insensitive network-on-chip, in:
Proceedings of ASP-DAC, 2005, pp. 39–44.

[3] P. K. F. H¨olzenspies et al., Run-time spatial mapping of streaming
applications to a heterogeneous multiprocessor system-on-chip
(mpsoc), in: Proceedings of DATE, 2008, pp. 212–217.

[4] A. K. Singh et al.,"Run-time mapping of multiple communicating
tasks on MPSoC platforms”, International Conference on
Computational Science, ICCS 2010.

[5] Carvalho, E.; Moraes, F. Congestion-aware task mapping in
heterogeneous MPSoCs. System-on-Chip (SoC), 2008.

[6] A. K. Singh et al., “Communication-aware heuristics for run-time
task mapping on noc-based mpsoc platforms,” Journal of Systems
Architecture,vol. 56, no. 7, 2010.

(a) Execution Time (b) Resource Optimization (c) Energy Consumption

 SNN Proposed Algorithm

(b) Application with 15 Tasks (a) Application with 10 Tasks

Figure 3: Computation Load Variance for App with 10 & 15 Tasks

 SNN Proposed Algorithm

No. of Tasks No. of Tasks No. of Tasks

To
ta

l E
xe

cu
tio

n
Ti

m
e

(C
lo

ck
 C

yc
le

s
x

10
00

00
)

%
 S

av
in

g
in

 P
E

us
ed

En
er

gy
 x

 (1
00

0
m

J)

336338

