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Abstract Real-time multi-media applications are increas-

ingly mapped on modern embedded systems based on mul-

tiprocessor systems-on-chip (MPSoC). Tasks of the applica-

tions need to be mapped on the MPSoC resources efficiently

in order to satisfy their performance constraints. Exploring

all the possible mappings, i.e., tasks to resources combina-

tions exhaustively may take days or weeks. Additionally, the

exploration is performed at design-time, which cannot han-

dle dynamism in applications and resources’ status. A run-

time mapping technique can cater for the dynamism but can-

not guarantee for strict timing deadlines due to large compu-

tations involved at run-time. Thus, an approach performing

feasible compute intensive exploration at design-time and us-

ing the explored results at run-time is required. This paper

presents a solution in the same direction. Communication-

aware design space exploration (CADSE) techniques have

been proposed to explore different mapping options to be se-

lected at run-time subject to desired performance and avail-

able MPSoC resources. Experiments show that the proposed

techniques for exploration are faster over an exhaustive ex-

ploration and provides almost the same quality of results.
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1 Introduction

Advanced multimedia embedded systems (e.g., smart

phones, tablets, PDAs) need to support multiple applications

concurrently. For example, a smart phone might be used to

view an image using a JPEG decoder and at the same time

to listen to music using an MP3 decoder. The increasing per-

formance demands of concurrently running applications are

satisfied by relying on multiprocessor systems-on-ship (MP-

SoC), for example, IBM Cell [1] and NXP Nexperia [2]. The

MPSoCs may contain different type of processing elements

(PEs) connected by a communication network, where, dis-

tinct features of the different type of PEs can be exploited to

achieve high performance.

The system users expect that timing (throughput) con-

straints of all applications running in the system are satisfied.

This calls for a predictable timing nature for each of the run-

ning application. For an application, the timing property de-

pends on its system resource uses, i.e., tasks to PEs mapping.

Time-constrained multimedia applications are modeled us-

ing synchronous dataflow graphs (SDFGs) that provide pre-

dictability [3,4]. Additionally, techniques to find throughput

of an SDFG already exist [5].

For a given set of applications and the underlying MP-

SoC platform, there is an enormous number of possibilities

for mapping the individual application tasks onto the plat-

form PEs. The mapping is accomplished either by design-

time DSE [6,7] or run-time mapping strategies [8–10]. The
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design-time DSE strategies are incapable of handling dy-

namism such as adding a new application into the platform

at run-time. On the other hand, the run-time mapping strate-

gies cannot provide timing guarantees due to lack of any pre-

vious analysis and limited computational resources at run-

time. Thus, an approach performing compute intensive analy-

sis (DSE) at design-time and using the analysis results at run-

time is required to accomplish the job of efficient applications

to platform mapping. There has already been few works that

use design-time analysis results for run-time management but

their analysis results are not optimized from throughput point

of view and are applicable only to the analyzed platform

[11,12].

The design-time DSE strategies need to find a number of

mappings by taking the application and platform as input. An

exhaustive DSE to find all the possible mappings is not scal-

able when the number of tasks/PEs is large as we need to

explore for lot of tasks to PEs combinations, which might

take several days. Additionally, existing DSE strategies do

not scale well with the number of tasks/PEs and do not always

provide the largest throughput mapping as they perform DSE

in view of optimizing for the performance metrics such as en-

ergy and resource optimization. Further, most of the existing

run-time mapping strategies perform all the computations at

run-time and the strategies using DSE results are not able to

get the optimal mapping.

This paper presents design-time DSE strategies that per-

form analysis on a generic MPSoC platform in view of op-

timizing throughput and produce resource-throughput trade-

off points, i.e., tasks to PEs mappings with their throughput.

A resource has been referred to as a tile that essentially con-

tains a processing engine along with other elements such as

memory. The processing engine type defines the tile type. The

platform contains different types of tiles such as processor

and reconfigurable hardware (RH). First, an exhaustive DSE

strategy is presented that produces all the possible tasks to

PEs mappings, which is not scalable with the number of tasks

in the application. To overcome the large exploration over-

head (may be a couple of weeks for large application size),

we present a communication-aware DSE (CADSE) strategy

that discards the evaluation of inefficient design points and

produces almost the same best trade-off points as that of the

exhaustive DSE. To further accelerate the DSE, we incorpo-

rated pruning in the CADSE (PCADSE) where evaluation of

the number of trade-off points is further decreased based on

a pruning criteria. The quality of the best mappings gener-

ated by the CADSE and PCADSE strategies do not differ sig-

nificantly, while the exploration process is speeded up. The

trade-off points are used by a light-weight run-time manager

to select the best point depending upon the available tiles in

the platform and desired throughput. Some parts of this re-

search are published in [13] and the same is extended for this

paper.

Our DSE strategies consider a generic multiprocessor plat-

form that contains tiles depending upon the tasks and their

implementation alternatives (e.g., a task can be supported

on a number of PE types) provided in the applications. The

strategies provide mappings where tasks are distributed on

different types of PEs. The considered platform contains tiles

separated by a fixed distance from each other, referred to as

hop_distance. A real-life 2×2 grid of tiles platform contains

a few tiles separated by a hop_distance of 1 and others by 2.

The DSE is performed by considering maximum separation

between the tiles in the expected target platform. The DSE

results are applicable to any platform on which the maxi-

mum distance between two tiles is less than or equal to the

fixed considered distance and the platform tile types are sub-

set of the tile types considered during DSE. Thus, no addi-

tional design-time analysis is needed in case of such differ-

ent target platforms and the approach becomes analogous to

analyze once & run everywhere, which is similar to Java’s

write-once-run-everywhere capability.

2 Related work

Several DSE strategies providing single mapping for an ap-

plication have been reported in literature [14–19]. The strat-

egy in [19] can be used iteratively to compute multiple

mappings providing memory-performance trade-offs. These

strategies are applicable only to fixed MPSoC platforms and

mappings are not optimized from throughput point of view

as throughput optimization is not their objective but to satisfy

some constraint. Further, they cannot handle dynamism in re-

source availability and throughput (QoS) requirement at run-

time. However, our DSE strategies are applied to a generic

MPSoC platform and generate a number of mappings with

different resource requirement and throughput, which helps

to handle run-time dynamism and allows them to be mapped

on any architecture without the need of repetitive analysis.

DSE strategies providing multiple mappings for the ap-

plication and a given platform have been recently presented

[7,12,20]. In [7], DSE is performed in view of optimizing

for the resource usage, whereas in [12] and [20], for opti-

mizing power. These strategies have several drawbacks, e.g.,

applicable only to fixed homogeneous platforms, generated

mappings are not optimized from throughput point of view,
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generate duplicate mappings for larger platforms and do not

scale with the platform size. The duplicate mappings have the

same throughput but they differ in placement of tasks on dif-

ferent tiles with the same tasks to tiles binding. Singh et al.

[21,22] propose DSE strategies that perform exploration in

view of optimizing throughput by considering a generic plat-

form, and the exploration follows a pruning strategy.

Some research has been focused on scenario-based DSE.

A scenario contains a set of simultaneously active applica-

tions and is also referred to as a use-case [23,24]. In order

to handle dynamism in number of active applications at run-

time, multiple applications mapping scenarios are explored

at design-time [25,26]. Such exploration is not scalable as

the number of scenarios becomes intractable with the num-

ber of applications. Instead, the applications can be mapped

one after another to avoid the exploration for a large num-

ber of scenarios and our mapping strategy follows the same

approach.

At run-time, the applications mapping can be started with

or without previously analyzed results. Most of the works

reported in literature start mapping without any previous

analysis and thus cannot guarantee for strict timing dead-

lines due to limited available computational resources at run-

time [8,27–29]. Some works preprocess the applications at

run-time before actual mapping is done in order to facili-

tate efficient mapping [30,31]. A few strategies use design-

time analysis results [11,12,21,32]. In [32], analysis result in-

cludes only a single mapping having minimum average power

consumption, so, the mapping may not be optimized from

throughput point of view. In [12] and [11], analysis results

do not include mappings satisfying the constraints in case of

limited resources, which might force the application to wait

until required resources are available. In [21], analysis results

include mappings optimized from throughput point of view

and for the limited resources case but they are applicable only

to homogeneous platforms. Our strategy considers heteroge-

neous platforms and uses the analyzed results efficiently in

order to provide timing guarantees.

3 Problem statement

This section defines the problem that we are heading to solve.

First, we describe the hardware MPSoC architecture model

and the application model that are used in this work.

3.1 Multiprocessor architecture model

The hardware architecture model describes platform process-

ing units and the interconnection network between them. The

platform model uses tile-based architecture that uses an inter-

connection network to connect the tiles as shown in the ex-

ample platform of Fig. 1. The platform contains tiles t1, t2, t3
and t4, which are connected by end-to-end connections with

fixed latencies. Latency of connections through any network-

on-chip (NoC) can be modeled so long as the latencies be-

tween tiles are provided. Each tile contains a processing en-

gine (e.g., processor P, RH, Accelerator), a local memory (M,

size in bits), a set of communication buffers, called network

interface (NI) that are accessed both by the interconnect and

the local processor, and maximum number of input/output

connections to connect with the NI that provide maximum in-

coming/outgoing bandwidth (in bits/time-unit). Multiproces-

sor systems such as StepNP [33] and Eclipse [34] fit nicely

into this platform model.

Fig. 1 Multiprocessor platform example

The communication network used in the example platform

of Fig. 1 is arranged in a 2-D mesh topology. The manhat-

tan distance between two tiles is referred to as hop_distance.

Adjacent tiles t1 & t2 are at hop_distance of 1 and t1 & t4
at hop_distance of 2 (1 hop in X-direction to reach t2 and 1

hop in Y-direction to reach t4). The latency of connections

between the tiles is directly proportional to hop_distance. We

increase the latency of connections between the tiles to ac-

count for the higher hop distances. This facilitates for finding

mappings even when the tiles are further apart in the actual

platform.

3.2 Application model

The application model considers throughput-constrained

multimedia applications consisting of multiple tasks. Syn-

chronous dataflow graphs (SDFGs) [3] are used to model

such applications. Throughput is an important constraint and

determines how often tasks of the application finish their ex-

ecution, which is determined by the cycles in the SDFG. An
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SDFG model of H.263 decoder application is shown in Fig.

2. Nodes modeling tasks are called actors that communicate

with tokens sent from one actor to another through edges

modeling dependencies. The application is modeled with four

actors vld, iq, idct and mc and four edges d1, d2, d3 and d4.

An actor has following attributes: its implementation alter-

natives (e.g., processor, Accelerator and RH tile), execution

time (in time-units) and memory needed (in bits) on the im-

plementation alternatives. An edge has following attributes:

size of a token (in bits), memory (in tokens) needed when

connected actors are allocated to the same tile, memory (in

tokens) needed in source and destination tiles, bandwidth (in

bits/time-unit) needed when connected actors are allocated to

different tiles. An actor fires (executes) when there are suf-

ficient tokens on all of its input edges and sufficient buffer

space on all of its output channels. At each firing, a fixed

number of tokens from the input edges are consumed and a

fixed number of tokens on the output edges are produced.

These numbers are referred to as rates that define how of-

ten actors have to fire with respect to each other. The edges

may have initial tokens to start the actor firing, indicated by

a bullet in the Fig. 2. The application model also specifies a

throughput-constraint.

Fig. 2 SDF graph model of an H.263 decoder

3.3 Problem formulation

Existing DSE strategies find mappings while performing op-

timization for power, resource usage, etc. This might lead

to mapping of parallel executing actors on the same tile and

thus forcing their execution sequentially, resulting in reduced

throughput. A number of mappings are evaluated for each

multimedia application to be supported on a hardware plat-

form. The evaluation considers finding different mappings

and their throughput. For each mapping, actors are bound

to tiles and edges to memory inside tiles or to connections

in the platform. The binding is considered valid if memory

imposed, allocated input/output connections and allocated in-

coming/outgoing bandwidth are less than or equal to the max-

imum available on each tile. Only the valid bindings are con-

sidered and throughput for the same is computed. For com-

puting throughput, first, a static-order schedule for each tile

is constructed, which orders the execution of bound actors.

A list-scheduler is used to construct the static-order sched-

ules for all the tiles at once by following the approach in

[35]. Then, all the binding and scheduling decisions are mod-

eled in a graph called binding-aware SDFG. Finally, through-

put is computed by self-timed state-space exploration of the

binding-aware SDFG [5].

For each application, exhaustive design space exploration

(EDSE) flow (e.g., [11]) evaluates all the possible actors to

tiles combinations, i.e., mappings. The flow needs to consider

a common platform graph that can evaluate all possible map-

pings for each application. Here, the applications are modeled

such that the implementation alternatives of actors could be

a number of tile types. The considered platform contains N

tiles of each implementation alternative, where N is the max-

imum value of number of actors in an application amongst all

the applications. This platform is capable of exploiting all the

parallelism present in each of the application and consider-

ing any bigger platform wouldn’t provide better performance.

Thus, it explores all potential mappings providing maximum

throughput. After considering a suitable platform, first, all the

possible mappings using processor tiles can be evaluated, and

then all the possible mappings using Heterogeneous tiles.

3.3.1 Exhaustive exploration of mappings using processor

tiles

The exploration of all the possible actors to processor (Proc)

tiles mappings follows a set of steps described subsequently.

An application with one actor (a1) to be mapped on Proc tiles

has only one unique actor to tile mapping, which is computed

from Eq. (1). An application with two actors (a1, a2) has two

unique mappings that is computed from Eq. (2). One map-

ping contains actors on separate tiles (1C0 implies that from

the remaining one actor a1, it is not chosen to combine it with

actor a2) and another on the same tile (1C1 implies that actor

a1 is chosen to combine it with actor a2). Similarly, for an ap-

plication with three actors (a1, a2, a3), the unique mappings

are computed from Eq. (3). First, actor a3 is mapped sep-

arately, i.e., not combined with others (from the remaining

two actors a1 and a2, none is chosen to combine with a3, indi-

cated as 2C0) and remaining two actors are mapped by using

Eq. (2) ( fEDSE(2, a1, a2)), providing two unique mappings.

Then, from the remaining two actors one actor is chosen

to combine with actor a3 (2C1) and the remaining actor is

mapped separately, providing two unique mappings. Next,
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from the remaining two actors, both are chosen to combine

with actor a3, providing one unique mapping. Thus, for an

application with three actors, a total of five unique actors to

tiles mappings are evaluated. In the same manner, for an ap-

plication with four actors (a1, a2, a3, a4), all the unique map-

pings are computed from Eq. (4) and we get a total of 15

unique mappings.

The equations can be extended in the similar manner to

evaluate all the unique mappings to cater for the applications

with larger number of actors. For an application with n actors

(a1, a2, . . . , an), the mappings can be computed from Eq. (5).

It can be observed that when computing mappings for larger

number of actors, the mappings computed at lower number

of actors are used, such as fEDSE(n − 1, a1, a2, . . . , an−1) in

fEDSE(n, a1, a2, . . . , an).

fEDSE(1, a1) = 1. (1)

fEDSE(2, a1, a2) = 1C0 × fEDSE(1, a1) + 1C1. (2)

fEDSE(3, a1, a2, a3)

= 2C0 × fEDSE(2, a1, a2)

+2C1 × fEDSE(1, remain_actor) + 2C2. (3)

fEDSE(4, a1, a2, a3, a4)

= 3C0 × fEDSE(3, a1, a2, a3)

+3C1 × fEDSE(2, remain_actors)

+3C2 × fEDSE(1, remain_actor) + 3C3. (4)
...

fEDSE(n, a1, a2, . . . , an)

= (n−1)C0 × fEDSE(n − 1, a1, a2, . . . , an−1)

+(n−1)C1 × fEDSE(n − 2, remain_actors)

+(n−1)C2 × fEDSE(n − 3, remain_actors)

+(n−1)Cn−2 × fEDSE(1, remain_actor) + (n−1)Cn−1. (5)

Mappings using processor tiles computed by EDSE: example

application.

The computation process has been applied onto the ex-

ample application H.263 decoder (see Fig. 2) to demon-

strate how the Proc tiles mappings are computed. The ap-

plication contains four actors vld, iq, idct and mc, so

we need to compute mappings by using Eq. (4), i.e.,

fEDSE(4, a1, a2, a3, a4). For the demonstration, actors vld, iq,

idct and mc are considered as a1, a2, a3 and a4, respectively.

Function fEDSE(4, a1, a2, a3, a4) needs fEDSE(3, a1, a2, a3) as

pre-computed and fEDSE(3, a1, a2, a3) needs fEDSE(2, a1, a2)

as pre-computed and so on. Thus, we need to proceed with

fEDSE(1, a1) that maps actor a1 on a Proc tile. The mappings

are computed as follows:

fEDSE(1, a1) =
[
a1

]
.

fEDSE(2, a1, a2) =

⎡⎢⎢⎢⎢⎢⎣
a2 a1

a2a1

⎤⎥⎥⎥⎥⎥⎦ .

fEDSE(3, a1, a2, a3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a3 a2 a1

a3 a2a1

a3a2 a1

a3a1 a2

a3a2a1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

fEDSE(4, a1, a2, a3, a4) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a4 a3 a2 a1

a4 a3 a2a1

a4 a3a2 a1

a4 a3a1 a2

a4 a3a2a1

a4a3 a2 a1

a4a3 a2a1

a4a2 a3 a1

a4a2 a3a1

a4a1 a3 a2

a4a1 a3a2

a4a3a2 a1

a4a3a1 a2

a4a2a1 a3

a4a3a2a1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For the four actors of H.263 decoder, we get a total of 15

Proc tiles mappings represented by the above matrix through

fEDSE(4, a1, a2, a3, a4). Each row denotes a mapping with dis-

tribution of actors on Proc tiles in each of the column. The

edges are mapped on connections between the tiles and we

have not shown mapping for edges as we want to focus only

on the number of mappings that depends upon the placement

of actors. Similarly, we get a total of 115 975 Proc tiles map-

pings for an application with 10 actors. Thus, exhaustive ex-

ploration may take days or weeks for applications with large

number of actors. The exploration time will increase further

when additional mappings that use heterogeneous tiles need

to be evaluated, which is described subsequently.

3.3.2 Exhaustive exploration of mappings using heteroge-

neous tiles

The heterogeneous tiles combination mappings can be eval-

uated by using the Proc tiles mappings obtained as described

earlier. We use Algorithm 1 for evaluating all such mappings.
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The algorithm evaluates a number of mappings correspond-

ing to each Proc tile mapping in set Maps and adds the eval-

uated mappings in the same set. For each Proc tile mapping,

the actors on each Proc tile are moved to another tile type (im-

plementation alternative) in order to generate a new mapping

provided all the actors on the Proc tile can be supported on the

other tile type. The actors moving condition avoids the eval-

uation of mappings using non-supported tile-combinations.

The generated mapping with its throughput is added to set

Maps. Thus, the final mapping set Maps contains all the map-

pings evaluated in the EDSE.

Algorithm 1 Heterogeneous tiles Comb. Mappings Evaluation

Input: Proc tiles mappings (set Maps)

Output: Heterogeneous tile-combinations combination mappings to be

added to set Maps

for each Proc tiles mapping α (∈Maps) do

findHeterogeneousTilesCombMappings(α, t1);

end

function findHeterogeneousTilesCombMappings(Mapping β, Tile

startProcTile)

if startProcTile == lastProcTile+1 then

return;

end

for Tile i = firstProcTile to lastProcTile (in current mapping) do

for each implementation alternative κ (e.g., DSP, ACC, RH tiles) do

if tile i contains actor(s) and all have their implementation

alternatives as κ then

Move actor(s) of tile i to a κ having no previous actor to

generate a new mapping α provided κ has required

resources (memory/area);

Compute throughput of α;

Add α with its throughput to set Maps;

findHeterogeneousTilesCombMappings (α, i+1);

end

end

end

The number of mappings evaluated by EDSE strategy in-

creases exponentially with the number of actors. Further,

the number of mappings increases even more when the im-

plementation alternatives of actors (number of tile types on

which the actors can be supported) get increased. The total

number of mappings (nrMapsEDSE) follows Eq. (6), which

uses the mappings using different Proc tiles and the number

of implementation alternatives (nrTileTypes).

nrMapsEDSE

= nrMapsUsing_1_ProcTile × (nrTileTypes)1

+nrMapsUsing_2_ProcTiles × (nrTileTypes)2

+nrMapsUsing_3_ProcTiles × (nrTileTypes)3

+ · · ·

+nrMapsUsing_n_ProcTiles × (nrTileTypes)n (6)

For the example H.263 decoder application, we get a to-

tal of 94 mappings (including 15 Proc tiles mappings), which

contain tasks distributed on Proc or Proc/RH or RH tiles when

Proc and RH tiles are considered as the implementation alter-

natives. We have not shown tasks to tiles distribution for dif-

ferent mappings as the number of mappings is large, which

requires larger space to show them. Similarly, we get a total

of 4 412 798 mappings for an application with 10 actors when

each actor can be supported on a Proc and RH tile. The num-

ber of mappings increases further with the number of sup-

ported tile types. Evaluation of such a large number of map-

pings (for large size applications) is not feasible within a rea-

sonable time. Therefore, DSE strategies that should discard

evaluation of inefficient mappings (providing less through-

put) need to be developed in order to accelerate the explo-

ration process. Next, we discuss our proposed DSE strategy

for faster and efficient exploration.

4 Proposed design space exploration method-
ologies

This section introduces our proposed DSE methodologies for

exploring multiple mappings.

4.1 Communication-aware design space exploration

The CADSE strategy performs exploration in communi-

cation-aware manner, i.e., by looking at the directly commu-

nicating (connected) actors. The exploration flow is presented

in Fig. 3. The flow takes application models as input and

stores the best mapping (MTDB) at each possible resource

combination. The applications are evaluated one after another

by incrementing the application number (appNumber++).

The flow first considers a common platform graph that can

evaluate all possible mappings for each application. The con-

sidered platform contains the same number of tiles for each

implementation alternative and this number is the maximum

value of number of actors in an application amongst all the

applications, i.e., max_nA. This platform is capable of ex-

ploiting all actors to tiles combinations, i.e., mappings, for

each application.

The initial considered platform contains tiles separated by

a distance of one hop_distance (hop_distance = 1), which

caters for a minimum latency for all the connections be-

tween the tiles. The DSE flow is repeated by considering

a similar platform containing tiles separated by one higher

hop_distance (hop_distance++), i.e., with increased latency
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Fig. 3 Communication-aware design space exploration flow

for connections, till hop_distance reaches to max_hop_ dis-

tance (one input to the DSE flow). The designers can

opt for a suitable value of max_hop_distance depend-

ing upon the expected hardware platform at run-time,

where, maximum hop_distance between two tiles can be

up to max_hop_distance. By opting a higher value of

max_hop_distance, the DSE flow evaluates larger number of

mappings, which needs more evaluation time but the map-

pings can then be applied to larger platforms. For example,

evaluated mappings with max_hop_distance value of 8 are

applicable to any platform where maximum separation be-

tween two tiles is less than or equal to 8 hops.

Varying hop_distance consideration provides mappings

where each edge of the application is mapped to a connec-

tion at hop_distance of one (to cater for minimum latency)

to max_hop_distance (to cater for maximum latency). This

caters for the run-time aspects when the available tiles are at

different hop_distances. After considering the platform, first,

the mappings using Proc tiles and then mappings using Het-

erogeneous tiles (highlighted in Fig. 3) are evaluated as de-

scribed subsequently.

4.1.1 Communication-aware exploration of mappings us-

ing processor tiles

In CADSE, for an application with n actors (a1, a2, . . . , an),

the Proc tiles mappings are evaluated from Eq. (7), which re-

quires n − 1, n − 2, . . . , 2, 1 actors mappings in advance as in

the EDSE. These mappings can be calculated by putting dif-

ferent values of n in the Eq. (7). This equation differs from

Eq. (5) while choosing actors to be combined with actor an

on the same tile. The chosen actors and actor an are checked

whether they are connected (conn). If they are found to be

connected then the chosen actors are mapped with actor an

on the same tile. For example, (n−1)C2−conn in Eq. (7) specifies

that the chosen (C) two actors and actor an are connected that

qualifies them to be mapped on the same tile.

fCADSE(n, a1, a2, . . . , an)

=(n−1) C0−conn × fCADSE(n − 1, a1, a2, . . . , an−1)

+(n−1)C1−conn × fCADSE(n − 2, remain_actors)

+(n−1)C2−conn × fCADSE(n − 3, remain_actors)

+ · · ·
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+(n−1)C(n−2)−conn × fCADSE(1, remain_actor)

+(n−1)C(n−1)−conn. (7)

To find whether a set of actors are connected, we find num-

ber of distinct channels between the actors. If there are more

than one channel between two actors then only one channel is

counted as the distinct channel. The actors are said to be con-

nected if the number of distinct channels between the actors

is � (the number of actors −1). For n actors (a1, a2, . . . , an)

of an application, the total number of distinct channels are

calculated from Algorithm 2.

Algorithm 2 Distinct channels calculation

Input: Application graph

Output: Number of distinct channels

distinctChannelCount = 0;

for actor ai = FirstActor (a1) to LastActor (an) do

for actor aj = actor next to ai (i.e. ai+1) to LastActor (an) do

if a channel exists between ai and aj then

distinctChannelCount++;

end

end

end

An example application of mappings using processor tiles

computed by CADSE is giren below.

The CADSE strategy has been applied to the example ap-

plication H.263 decoder (see Fig. 2). The mappings using

Proc tiles are computed by Eq. (7) by putting n equal to four.

Application actors vld, iq, idct, and mc are considered as a1,

a2, a3, and a4, respectively. The computed mappings are rep-

resented by function fCADSE(4, a1, a2, a3, a4) as follows:

fCADSE(4, a1, a2, a3, a4) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a4 a3 a2 a1

a4 a3 a2a1

a4 a3a2 a1

a4 a3a2a1

a4a3 a2 a1

a4a3 a2a1

a4a1 a3 a2

a4a1 a3a2

a4a3a2 a1

a4a3a1 a2

a4a2a1 a3

a4a3a2a1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The CADSE strategy discards the evaluation of mappings

where a tile contains non-connected actors and thus evaluates

less number of mappings as compared to the EDSE. For the

four actors of H.263 decoder, we get a total of 12 Proc tiles

mappings represented by the matrix fCADSE(4, a1, a2, a3, a4).

This strategy takes advantage of the fact that mapping only

connected actors on the same tile will lead to reduced com-

munication overhead between the actors. However, if the con-

nected actors are executing in parallel then we will be forcing

their execution sequentially. So, we will be having gain by re-

ducing communication overhead and loss by reducing the po-

tential parallelism in execution. If the gain is greater than the

loss, then we always get the same quality of best mappings

by CADSE and EDSE.

4.1.2 Communication-aware exploration of mappings us-

ing heterogeneous tiles

The heterogeneous tiles combination mappings are eval-

uated by using the Proc tiles mappings obtained by the

communication-aware exploration as described earlier. The

same algorithm as of EDSE, i.e., Algorithm 1 is used for

evaluating all such mappings by providing the Proc tiles map-

pings as input. For the example H.263 decoder application,

the CADSE explores a total of 54 mappings (including 12

Proc tiles mappings), whereas EDSE explores a total of 94

mappings with two types of implementation alternatives as

described earlier. The evaluated best mapping at each re-

source combination by CADSE has almost the same quality

(throughput) as that of the EDSE. For applications with larger

number of actors, the difference in the number of evaluated

mappings by EDSE and CADSE increases and thus the differ-

ence in the exploration time. The reduced number of explored

mappings by CADSE facilitates for faster exploration and re-

duces the exploration time significantly when compared to

EDSE.

4.1.3 Selecting best mapping at each resource combination

At each possible processing tile-combination, we get a num-

ber of mappings. This step of the exploration flow selects

the maximum throughput mapping at each resource combi-

nation and stores it into the mappings & throughput database

(MTDB) (see Fig. 3). For the example H.263 decoder appli-

cation, at 2Proc & 2RH tiles resource combination, we get a

total of six mappings at each hop_distance value. This step of

the flow filters out the maximum throughput mapping out of

the six mappings and stores it in the MTDB. Similar process

is carried out for each resource combination.

These stored mappings are kept to be used at run-time.

For mapping an application at run-time, out of all the stored

mappings for the application, the best mapping can be se-



Amit Kumar SINGH et al. CADSE: communication aware design space exploration for efficient run-time MPSoC management 9

lected based on the available platform resources and desired

throughput. The selected mapping is then used to configure

the platform.

4.2 Pruning-based communication-aware design space ex-

ploration

The pruning-based communication-aware design space ex-

ploration (PCADSE) strategy incorporates pruning in the

CADSE strategy. In Fig. 3, after evaluating Proc tiles map-

ping by CADSE, only the best (maximum throughput) map-

ping at each Proc tile count is passed to evaluate heteroge-

neous tiles combination mappings, whereas, all the Proc tiles

mappings are passed in CADSE. Proc tile count for a map-

ping is defined as the number of used Proc tiles in the map-

ping. For the H.263 decoder (see Fig. 2), the CADSE evalu-

ates three mappings using three Proc tiles, and only the best

mapping out of the three mappings is passed to evaluate het-

erogeneous tiles combination mappings. A total of only 34

mappings are explored by PCADSE when considering two

implementation alternatives of each application.

The pruning consideration facilitates for speeded explo-

ration over the CADSE and provides almost the same quality

(throughput) of best mapping at each resource combination.

This strategy assumes that by starting with the best Proc tile

mapping to evaluate heterogeneous tiles combination map-

pings, we should get the best mapping at heterogeneous tiles

combinations as well. The quality of the best mapping by the

PCADSE might be a bit lower as compared to CADSE.

4.2.1 Run-time mapping

The DSE flow stores the maximum throughput mapping at

each resource combination for the applications which are ex-

pected to be mapped on a platform at run-time. The stored

mappings are used at run-time in order to accelerate the run-

time mapping process. A run-time platform manager (RTPM)

handles the mapping process by assigning the platform re-

sources to the required applications one after another, i.e.,

after accomplishing mapping process for one application it

goes on to map the next application. In order to map an appli-

cation, the RTPM takes the application, its desired through-

put, platform with updated resources status and the mapping

storage MTDB as input and selects a throughput satisfying

mapping from the MTDB. The selected mapping uses mini-

mum possible resources (number of tiles) and the platform is

configured based on the actors to tiles allocations of the se-

lected mapping provided the platform has sufficient available

resources.

4.2.2 Resource sharing by applications

The applications for which mappings are stored in the

database use 100% of the available time wheel at each used

tile. Thus, completely free tiles are chosen at run-time. For

generalizing the approach when each tile is shared by mul-

tiple applications, the same design-time analysis flow can

be applied for analysis at different reserved time slices and

then the design points can be used at run-time depending

upon the available time slices at available tiles, and required

throughput. For each application, we can perform design-

time analysis to store mappings and their throughput when

reserved time slice is 25%, 50%, 75%, and 100% of the

available time wheel at each tile. This provides us mappings

with their throughput where all the used tiles are occupied

25%, 50%, 75%, or 100% of the time. To map a throughput-

constrained application at run-time, the RTPM need to pro-

vide available tile slices on the available tiles. The tile having

minimum available time slice determines the scanning into

MTDB. First the MTDB at reserved time slice of 25% is

scanned for the available tiles, then storage at reserved time

slice of 50% and so on. For example, if minimum available

time slice is 75%, then storage at reserved time slice of 25%

will be scanned first, followed by the storage at reserved time

slice of 50% and then of 75%. The storage at reserved time

slice of more than 75%, i.e., 100% will not be scanned as

this exceeds the availability at some selected tiles. The scan-

ning stops as soon as a mapping satisfying the throughput-

constraint is found. The complexity of the run-time strategy

to find a mapping becomes higher in this case.

5 Performance evaluation

This section evaluates our DSE and run-time mapping

methodologies. The methodologies have been implemented

as an extension to the publicly available tool set SDF3 [4]. As

a benchmark to evaluate run-time and quality of the method-

ologies, we have considered two scenarios of applications: (i)

100 random applications modeled as SDFGs with 4, 5, 6, and

7 actors having different implementation alternatives, and (ii)

models of multimedia applications H.263 decoder (4 actors),

H.263 encoder (5 actors), JPEG decoder (6 actors) and JPEG

encoder (4 actors) to perform a case study for real-life ap-

plications, where the actors implementation alternatives are

specified in the application models. The experiments have

been performed on a Core 2 Duo processor at 3.16 GHz.

The same platform graph is considered to evaluate the dif-

ferent DSE methodologies in order to have a fair comparison



10 Front. Comput. Sci.

amongst the methodologies. The platform tiles are consid-

ered based on the application containing maximum number

of actors as described in the earlier section. We have adopted

a tile-based architecture but any type of architecture can be

modeled based on the known latencies between the tiles as

discussed earlier.

5.1 Design space exploration

Table 1 shows the number of mappings evaluated by the

EDSE (Eq. (6)) as the number of actors (nrActors) increases

at different number of available implementation alternatives

(nrTileTypes) for each of the actor. For n actors having nrTile-

Types implementation alternatives, the total number of map-

pings follows Bell numbers: ways of placing n labeled balls

into n unlabeled (but nrTileTypes-colored) boxes [36]. The

number of mappings in Table 1 is for a fixed hop_distance

(e.g., 1) and the same number of mappings needs to be eval-

uated for each hop_distance.

Table 1 Number of mappings by EDSE

nrTileTypes
nrActors

1 2 3

1 1 2 3

2 2 6 12

3 5 22 57

4 15 94 309

5 52 454 1 866

6 203 2 430 12 351

7 877 14 214 88 563

8 4 140 89 918 681 870

9 21 147 610 162 5 597 643

10 115 975 4 412 758 48 718 569

It can be observed from Table 1 that the number of map-

pings are going really high and the number will increase fur-

ther in case of more nrTileTypes. Thus, the exploration will

take a very long time for larger value of nrActors and nrTile-

Types; in some cases it may take a couple of days. This makes

the EDSE non-scalable although it always provides the best

quality of mapping at each resource combination.

The CADSE has been employed to speed up the ex-

ploration process while providing almost the same qual-

ity (throughput) of mappings. The PCADSE speeds up the

exploration process further while providing a bit of de-

graded quality of mappings. The three methodologies EDSE,

CADSE and PCADSE are applied to the scenario (i) to cap-

ture the best mapping at each resource combination for all

the 100 applications. Figure 4 shows the quality (throughput)

of the best mapping at 2 Proc and and 1 RH tiles resource

combination for all the applications when tiles are assumed

to be separated by a fixed hop_distance. The best mapping

throughput obtained by CADSE and PCADSE are normal-

ized with respect to (w.r.t.) EDSE. The normalized through-

put values are plotted after sorting them in descending or-

der. It can be observed that the CADSE provides the same

best mappings for more than 90% of the applications and the

PCADSE for more than 80% of the applications. Similar be-

havior is obtained at other resource combinations. Thus, we

can say that for most of the applications, we get the same

quality of mappings by all the DSE strategies. Additionally,

for remaining applications where we do not get the same

quality of mappings by CADSE and PCADSE, the quality

varies only by 10% as compared to that of the EDSE. So, in

case of 10% relaxed throughput constraint at run-time, the

mappings generated for all the applications by CADSE and

PCADSE will be acceptable.

Figure 5 shows the speed up obtained by CADSE and

PCADSE over the EDSE for all the 100 applications. The

speed up by CADSE and PCADSE is calculated by dividing

execution time of EDSE to the execution time of CADSE

and PCADSE, respectively. The applications are sorted by

the number of actors within them and for the same number of

Fig. 4 Quality of mappings by CADSE and PCADSE over the EDSE in the first evaluated scenario
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Fig. 5 Speed up obtained by CADSE and PCADSE over the EDSE in the first evaluated scenario

actors the speed up is sorted on CADSE. It can be observed

that CADSE is faster over the EDSE, and the PCADSE is

faster even over the CADSE for all the applications. It is

also clear that as the number of actors increases in the ap-

plications, the speed up obtained by the CADSE increases as

the strategy discards evaluation of more number of mappings

by incorporating communication-aware exploration, whereas

speed up obtained by the PCADSE increases further as the

strategy has to prune from a larger number of Proc tiles map-

pings for evaluating heterogeneous tiles combinations map-

pings. On an average, the CADSE and PCADSE is faster by

3.7× and 11×, respectively when compared to EDSE. Thus,

we get speeded exploration providing almost the same quality

of mappings.

5.2 Case study: multimedia applications DSE

We have performed a case study on models of real-life multi-

media applications (scenario (ii)). All the DSE strategies have

been applied to the applications in scenario (ii). Table 2 shows

number of evaluated mappings at different resource combi-

nations for H.263 encoder (5 actors) and H.263 decoder (4

actors) when different DSE methodologies are employed at a

fixed value of hop_distance. The same number of mappings

are evaluated at each hop_distance value. All the actors have

been assumed to have their implementation alternatives as

Proc and RH tiles, whereas higher number of implementation

alternatives can be considered. The number of mappings for

H.263 decoder at different resource combinations using total

5 tiles is zero as there would not be any such mapping where

4 actors will be distributed on 5 tiles. The last row shows to-

tal number of mappings by different methodologies. It can be

observed that total number of mappings get reduced signifi-

cantly when CADSE is employed. The number of mappings

is further reduced when PCADSE is employed. Thus, we

get speed up when CADSE and PCADSE strategies are em-

ployed. It has been observed that the best (maximum through-

put) mapping at each resource combination by all the strate-

gies is the same for H.263 encoder/decoder. Mappings of

JPEG encoder (4 actors) shows similar behavior as of H.263

decoder.

Table 2 Number of mappings by different DSEs

Resource H.263 encoder DSE H.263 decoder DSE

combinations EDSE CADSE PCADSE EDSE CADSE PCADSE

5Proc 1 1 1 0 0 0

4Proc & 1RH 5 5 5 0 0 0

3Proc & 2RH 10 10 10 0 0 0

2Proc & 3RH 10 10 10 0 0 0

1Proc & 4RH 5 5 5 0 0 0

5RH 1 1 1 0 0 0

4Proc 10 5 5 1 1 1

3Proc & 1RH 40 20 4 4 4 4

2Proc & 2RH 60 30 6 6 6 6

1Proc & 3RH 40 20 4 4 4 4

4RH 10 5 1 1 1 1

3Proc 25 10 10 6 3 3

2Proc & 1RH 75 30 3 18 9 3

1Proc & 2RH 75 30 3 18 9 3

3RH 25 10 1 1 3 1

2Proc 15 7 7 7 3 3

1Proc & 1RH 30 14 2 14 6 2

2RH 15 7 1 7 3 1

1Proc 1 1 1 1 1 1

1RH 1 1 1 1 1 1

Total mappings 454 222 81 94 54 34

For JPEG decoder (6 actors), the EDSE, CADSE and

PCADSE strategies evaluate a total of 2 430, 718, and 178

mappings, respectively. We observed that the best mapping

at each resource combination by EDSE and CADSE is the

same. However, PCADSE provides mappings having lower

quality (throughput) at resource combinations 3Proc & 1RH,

2Proc & 2RH, 2Proc & 1RH, and 1Proc & 1RH, i.e., the best

mappings get missed.

5.3 Run-time mapping

The DSE methodologies store the best mappings at each re-

source combination at varying hop_distance values (referred

to as hops). The best mapping at different hops remains the

same with a bit of different quality of the mapping as the de-
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lays of connections between the tiles get changed. At run-

time, the RTPM selects the best mapping depending upon

the available resources and hop_distance between them. The

results obtained from the existing run-time strategies that

start the application mapping without any previous analysis

(perform required analysis at run-time) are compared with

our run-time strategy (using the DSE results). The exist-

ing run-time strategies take time first in finding a mapping

and then in computing throughput for the same, whereas

our strategy just selects the best mapping from the map-

ping database MTDB. Throughput computation for a map-

ping takes much more time than in finding the mapping and

thus strategies performing analysis at run-time are not effi-

cient. In contrast, the total time in our strategy consists of

only the selection and placement only. In placement, the ac-

tors are configured on the platform tiles based on the selected

mapping. Figure 6 shows the time required (in milliseconds)

to map throughput-constrained multimedia applications on a

4×4 MPSoC platform when nearest neighbor (NN) proposed

in [28], communication-aware nearest neighbor (CNN) pro-

posed in [10] and our run-time mapping strategy is employed.

On average, our run-time strategy is faster by about 90%

when compared to CNN.

Fig. 6 Time required/ms to map the applications by different strategies

In case of limited memory to store MTDB database, all

mappings for all the applications might not get stored. In such

cases, we can store only a few mappings for each applica-

tion in the limited memory. The mappings having maximum

throughput need to be stored to satisfy varying throughput

requirements at run-time. If the limited memory cannot store

even a single mapping for an application, the mapping pro-

cess cannot be accelerated for the application as the mapping

and its throughput need to be computed at run-time.

5.4 Real-time through guarantee

Table 3 shows the DSE results for the H.263 decoder (4

actors) at max_hop_distance of 6. At each hop, the best

mapping’s throughput at different resource combinations

(Proc/RH tiles combinations) using a total of four tiles is

shown. At other resource combinations using different num-

ber of tiles, similar results are obtained. It can be observed

that at each shown resource combination, the throughput

(quality) of the best mappings from hop_1 to hop_6 does

not vary much. At 4 Proc tiles, the best mappings through-

put at hop_1 and hop_6 differ only by 0.6%. The throughput

differs by almost the same percentage at all other resource

combinations. Thus, the quality of mappings does not change

much at higher hops and we can store the best mappings only

for the maximum hop in order to reduce memory required to

store the mappings. This also reduces overhead of the run-

time manager as it has to select from a relatively smaller set

of mappings.

Our DSE strategies evaluate mappings by assuming that all

the actors are separated by some fixed hop_distance, whereas

in real situation, the available tiles at run-time might not be at

the same hop_distance. At run-time, for finding a throughput

satisfying mapping from the explored mappings at design-

time, one needs to look for a mapping containing tiles sepa-

rated by a hop_distance of maximum possible hop between

the available tiles. If the found mapping satisfies the through-

put constraint then mapping the actors on the available tiles

will satisfy the constraint for sure as latency of some connec-

tions will be smaller as compared to considered during DSE.

So, after mapping, we never get worse throughput than the

stored one, making the results suitable to use in real-time ap-

plications.

6 Conclusions

This paper presents DSE strategies for supporting efficient

Table 3 DSE results for H.263 decoder at varying hop_distance

Best mappings throughput (10−10/time-unit)
Tile count Resource combination

hop_1 hop_2 hop_3 hop_4 hop_5 hop_6

4 4Proc 28 655.3 28 616.8 28 578.4 28 540.0 28 501.8 28 463.7

3Proc & 1RH 29 170.0 29 130.1 29 090.2 29 050.5 29 010.9 28 971.4

2Proc & 2RH 29 612.5 29 571.4 29 530.3 29 489.4 29 448.6 29 407.9

1Proc & 3RH 29 612.5 29 571.4 29 530.3 29 489.4 29 448.6 29 407.9

4RH 29 612.5 29 571.4 29 530.3 29 489.4 29 448.6 29 407.9
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run-time MPSoC management. The strategies store the best

mapping at each resource combination, which can be directly

used at run-time depending upon the available resources and

desired throughput, facilitating for faster run-time mapping.

Three DSE strategies have been explained. One strategy per-

forms EDSE and produces the best quality of mapping at

each resource combination, whereas, this strategy has worst

run-time. Next, a CADSE strategy is presented to perform

the exploration in communication-aware manner in order to

reduce the total number of mappings to be evaluated. The

communication-aware consideration reduces the exploration

time and provides almost the same quality of mappings. To

further reduce the exploration time, a pruning criteria has

been incorporated in the CADSE, which provides a bit of

degraded quality of mappings. The DSE strategies have been

applied on models of real-life multimedia applications to

show their real-time applicability. In future, we plan to de-

velop more ways of faster DSE in order to further speed

up the exploration process while providing almost the same

quality of mappings as of the EDSE.
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