
Mapping Algorithms for NoC-based Heterogeneous MPSoC Platforms

Amit Kumar Singh, Wu Jigang, Alok Prakash, Thambipillai Srikanthan (Senior Member, IEEE)
Centre for High Performance Embedded Systems, Nanyang Technological University, Singapore

{amit0011, asjgwu, alok0001, astsrikan}@ ntu.edu.sg

Abstract— Mapping of applications onto Multiprocessor
System-on-Chip (MPSoC) can be realized either at design-time
or run-time. At any time the number of tasks executing in
MPSoC platform can exceed the available resources, requiring
efficient run-time mapping techniques to meet the real-time
constraints of the applications. This paper presents two run-
time mapping heuristics for mapping the tasks of an
application in close proximity so as to minimize the
communication overhead. In particular, the communication
overhead between two adjacent hardware tasks is eliminated
by mapping them onto the same reconfigurable processing
node. We show that the proposed approach is capable of
alleviating Network-on-Chip (NoC) congestion bottlenecks to
optimize the overall performance. Based on our investigations
to map the tasks of applications’ at run-time onto an 8×8 NoC-
based Heterogeneous MPSoC, our mapping heuristics are
capable of reducing total execution time and average channel
load of applications when compared to state-of-the-art run-
time mapping heuristics.

Keywords- Multiprocessor System-on-Chip (MPSoC) Design,
Network-on-Chip (NoC), Run-time mapping, Mapping
Algorithms.

I. INTRODUCTION
The complexity of embedded software applications is

now at a point where these applications cannot be supported
by a single general purpose processor, inevitably requiring
high performance computing platforms. The advancement in
Nanotechnology has made it feasible to integrate several
embedded processing elements in a single chip to develop
Multiprocessors System-on-Chip. MPSoCs are solution to
these complex applications in order to meet the performance
requirements [1].

The communication infrastructure required to have proper
communication amongst multiple PEs can be bus-based,
point-to-point or Networks-on-Chip (NoCs)-based [2]. The
use of NoC based communication infrastructure is
compulsory as NoCs have several advantages over others,
such as scalability and shorter wires, which minimizes
power consumption. In order to meet the ever-rising
performance constraints, NoCs can integrate instruction set
processors (ISPs), specialized processing elements like
Digital Signal Processors (DSPs), FPGA fabric tiles,
dedicated intellectual property cores (IPs) and specialized
memories on a single chip towards the development of an
MPSoC [3][4].

The homogeneous MPSoCs [5][6][7], consisting of
identical processing elements can support some
applications, whereas heterogeneous MPSoCs consisting of
different types of processing elements can support wider
variety of applications. Heterogeneous MPSoCs exploit the
distinct features of different processing elements to improve
the performance.

Most of the work in literature present static mapping
techniques [8][9] that cover only certain scenarios. These
techniques find the best placement of tasks at design-time
and hence these are not suitable for dynamic workloads.
There are a few works which focus on dynamic approaches
[10][11]. In dynamic approach tasks are loaded into the
system at run-time. Task migration [3][12] can also be used
to insert a new task into the system at run-time. In
Heterogeneous MPSoCs, task migration is used at run-time
to improve the performance. In task migration the tasks are
relocated from one processing element to another processing
element when a performance bottleneck is detected or when
the workload needs to be distributed more homogeneously.
Issues related to the task migration such as the cost to
interrupt a given task, saving its context, transmitting all of
the data to a new processing element and restarting the task
in the new processing element are discussed in [3], [12] and
[13].

This work describes two new run-time mapping heuristics
based on our packing strategy and their performance
evaluation for a NoC-based heterogeneous MPSoC. State-
of-the-art run-time mapping heuristics do not consider
multitasking resources in the platform and also do not
perform well when applied to different scenarios. The
presented heuristics developed with the packing strategy
consider multitasking resources and give better performance
compared to state-of-the-art mapping heuristics. The
MPSoC platform consists of software and hardware
(Reconfigurable Logic) processing elements. The software
processing elements can support only one task whereas the
hardware processing elements considered here are large
enough that can support more than one task in parallel. At
run-time, the adjacent hardware communicating tasks of an
application may get mapped on same reconfigurable
processing node, resulting in almost no communication
overhead between the tasks. The heuristics try to map the
tasks of an application in close proximity within a particular
region in order to further reduce the communication
overhead between the communicating tasks, thus resulting
in a significant performance improvement. The performance

2009 12th Euromicro Conference on Digital System Design / Architectures, Methods and Tools

978-0-7695-3782-5/09 $25.00 © 2009 IEEE

DOI 10.1109/DSD.2009.145

133

metric includes overall execution time and average channel
load.

 The rest of the paper is organized as follows: Section II
describes related works. Section III presents the MPSoC
architecture. In Section IV, we present our packing strategy.
Section V describes the task mapping algorithms.
Experimental setup and the results are presented in Section
VI with Section VII concluding the paper and future
directions.

II. RELATED WORK
Several chip multiprocessors are being developed by

industry [14]. Some domain specific multiprocessors,
network processors and general purpose multiprocessors
have already been developed by industry for different type
of computation requirements.

 Static mapping techniques for NoC-based and bus-based
MPSoCs are presented in [8][9][15] and [16] to solve the
problem of mapping. These techniques find the fix
placement of tasks at design time with a well known
computation and communication behavior. Therefore, these
mapping techniques are not suitable for an adaptive system
that changes its configuration over time and requires re-
mapping/run-time mapping of applications.

Smit et al. [4] present a run-time task assignment
algorithm to map a task-graph on an MPSoC platform. The
algorithm maps a task before all other task that needs a
scarce resource by taking availability of resources into
account. Efficient heterogeneous multi-core architectures
for streaming applications and run-time mapping of these
applications onto these multi-core architectures are
presented in [17].

Nollet et al. [18] describe a run-time task assignment
heuristic for efficiently mapping the tasks in a
multiprocessor systems-on-chip containing FPGA fabric
tiles. With the presence of FPGA fabric tiles, algorithm is
capable of managing a configuration hierarchy and it
improves the task assignment success rate and quality.

Holzenspies et al. [19] present a run-time spatial mapping
technique consisting of four steps to map the streaming
applications onto a heterogeneous MPSoC. The algorithm is
implemented on an ARM926 running at 100 MHz and it
takes less than 4 ms to run the HIPERLAN/2 example.

Faruque et al. [20] present a run-time agent based
distributed application mapping technique for NoC-based
heterogeneous MPSoCs. The technique presented tries to
map the applications in a distributed manner using an agent-
based approach. The approach reduces the monitoring
traffic and computational effort for the run-time mapping
algorithms.

Ngouanga et al. [10] describe a mapping technique based
on the attraction forces between communicating tasks that
tries to place them near to each other. In [21] and [22] run-
time mapping techniques to map the tasks onto MPSoC

platforms are presented. The MPSoC platform in [21] is
homogeneous while in [22], it is heterogeneous.

Task Migration mechanisms are presented in [3][18]. For
migrating a task from one IP to another, the method in [3]
uses task migration points as a point of reference. Authors
in [18] use checkpoints, to define when a given task can be
migrated.

Carvalho et al. [23] present heuristics for run-time
mapping of tasks in NoC-based heterogeneous MPSoCs.
Tasks are mapped on the fly, according to the
communication requests and the load in the NoC links. The
target MPSoC architecture contains software and hardware
processing elements. Each processing element can support
only one task. Differently from this, in our target MPSoC
architecture the hardware processing (Reconfigurable Logic)
elements can support more than one task in parallel. At run-
time if two adjacent hardware communicating tasks of an
application get mapped on same processing element, then
the communication overhead between the tasks is greatly
reduced. Additionally, the mapping heuristics proposed here
tries to map the communicating tasks of an application close
to each other so as to minimize the communication overhead
in order to further improve the performance. Mapping
heuristics Nearest Neighbor (NN) and Best Neighbor (BN)
presented in [23] are taken for evaluation and performance
comparison with our proposed mapping heuristics.

III. TARGET MPSOC ARCHITECTURE
MPSoC architecture used in this work contains a set of

different processing elements which interact via a
communication network [24]. Software tasks execute in
instruction set processors (ISPs) and hardware tasks execute
in reconfigurable logics (reconfigurable area-RA) or in
dedicated IPs. The reconfigurable areas or blocks
considered in this work are large enough that can support
more than one hardware tasks in parallel. The
communication network uses message passing protocol for
inter-task communication similar to that described in [23].

Figure 1. Conceptual MPSoC Architecture

134

Among the available processing nodes, one of the
processing node is used as the Manager Processor (M) that
is responsible for task scheduling, task binding, task
placement (mapping), task migration, resource control and
reconfiguration control. The M knows only the initial tasks
of the applications. The initial task of each application is
started by the M and new communicating tasks are loaded
into the MPSoC platform at run-time from the task memory
when a communication to them is required and they are not
already mapped.

In this work the focus is on resource control, task
binding and task placement (mapping). The resources status
is updated at run-time to provide the Manager Processor with
an accurate information about the resource occupancy as the
mapping decision is taken based on the PEs and NoC use.
For task scheduling queue strategy is used and there are
three queues, one for each type (i.e. hardware, software and
initial) of task. If there are no free resources in the system the
task enters into their corresponding queue and waits until a
resource of same type does not get free.

IV. OUR PACKING STRATEGY
This section introduces our packing strategy for efficient

mapping of applications onto a NoC-based heterogeneous
MPSoC.

A. Definitions
 Definitions necessary to explain our packing strategy are
as follows:
Definition 1: An application task graph is represented as an
acyclic directed graph TG = (T, E), where T is set of all
tasks of an application and E is the set of all edges in the
application. Figure 2 (a) describes an application having
initial, software and hardware tasks along with the edges (E)
connecting these tasks and (b) shows the master-slave pair
(communicating tasks). The starting task of an application is
the initial task that has no master. E contains all the pair of
communicating tasks and is represented as (mtid, stid, (Vms,
Rms, Vsm, Rsm)), where mtid represents the master task
identifier, stid represents the slave task identifier; Vms and Rms
are the data volumes and data rate sent respectively from
master to slave; Vsm and Rsm are the data volumes and data
rate sent respectively from slave to master respectively. The
message rate is described as percentage of available link
bandwidth. XY routing algorithm is used to transmit and
receive the messages and both rates are relevant in the
model as the path taken by messages is different. In XY
routing first the packet is transferred in X-direction then in
Y-direction for transferring packets from one node to
another node.
Definition 2: A NoC-based heterogeneous MPSoC
architecture is a directed graph AG = (P, V), where P is the
set of tiles pi and vi,j V presents the physical channel
between two tiles pi and pj. A tile pi P consists of a router,
a network interface, a heterogeneous processing element,
local memory and a cache.

 (a) (b)

Figure 2. Application Modeling and Master-Slave pair

Definition 3: The application mapping is represented by
mpng : ti () | pi (P) to map the tasks of the application
onto the NoC-based heterogeneous MPSoC.

B. The Packing Strategy
State-of-the-art run-time mapping heuristics to map the

applications onto an MPSoC platform consider single task
supported processing elements and do not perform well
when applied to different scenarios. Here, we have
incorporated large enough hardware resources in the
platform that can support more than one task in order to map
two tasks on one processing element. The mapping
heuristics developed with the packing strategy try to map
the communicating tasks in close proximity reducing the
communication overhead, resulting in improved overall
performance compared to the state-of-the-art mapping
heuristics.

Figure 3. Initial tasks placement for mapping applications with packing
strategy

In our packing strategy, all tasks of an application are
tried to be mapped close to each other. For each application
to be mapped on the MPSoC platform, firstly, clusters are
found for each application and initial tasks are placed at the
centre of the clusters as shown in figure 3. The cluster
boundaries are not fixed for any application and hence a

135

common region can be shared by tasks of different
applications. These virtual clusters are used to find the
initial task (starting task) placement in a distributed manner
so that the new communicating tasks can be mapped close
to each other, this greatly reduces the communication
overhead between the communicating tasks. After the initial
task gets mapped, new communicating tasks of an
application are mapped according to the communication
request. To map a requested task, firstly, the task is tried to
map at the same node making the request as hardware
resources can support more than one task. A task in
supported by a processing element (PE) if type of PE is
same as task type and there is free resource at the PE
location. If task is not supported by the node making the
request then it is tried to be mapped to the left or down side
PE around the node making the request. Now, if neither left
nor down side processing element is able to execute the task
only then task is tried to be mapped on the top or right side
processing element. The same strategy is followed by each
application to map their tasks on the MPSoC platform.

With packing strategy the communicating tasks of an
application are tried to map close to each other in a compact
manner to reduce the communication overhead between the
communicating tasks. As with this strategy, first each
application tries to map its task towards bottom-left (either
on bottom or left PE) side within the cluster hence the
processing elements present on top-right edge of the cluster
may be used by another application that is also trying to
map its tasks towards bottom-left (either on bottom or left
PE). In this manner if one application is getting mapped
then the applications that are tried to be mapped on top-side,
right-side or top-right side may get the free resources on the
top and right edges of the first application’s cluster and
tasks of the other applications can be mapped on these
resources. This strategy is applied to all the applications to
be mapped, thus most of the applications get the free
resources from other application’s top-right edge of the
cluster. Additionally, as hardware resources can support
more than one task in parallel so two communicating
hardware tasks can be mapped on one resource location,
reducing the communication overhead and making the
mapping more compact.

 This strategy tries to keep the communicating tasks as
close as possible, thus reducing the communication overhead
between two communicating tasks. Execution time of an
application mainly depends on computation time and
communication time. With the help of the packing strategy
the communication overhead is reduced, resulting in reduced
communication time and hence the execution time. Channel
load also gets reduced as it depends on the communication
overhead.

V. RUN-TIME MAPPING ALGORITHMS
Our run-time mapping algorithms are motivated by the

packing strategy as discussed in section IV. The given
algorithms are light-weight in terms of execution cycles and

channel load. First initial tasks are mapped and then new
tasks are mapped into the MPSoC at run-time when
communication to them is required.

A. Initial Task Mapping
The initial tasks are considered as software tasks so these

are mapped onto software processing elements. Initial task
mapping has significant impact on the performance of run-
time mapping. There are two different ways to map the
initial tasks. In the first method, the initial tasks can be
mapped on the first free position found in the network that
can support the tasks. This may result the initial tasks to be
placed very close to each other. Now, when new tasks of
different applications are requested to be mapped, the
applications have to share the same NoC region, resulting in
longer waiting time for a resource to become free for a task
to be mapped. This also increases the channel congestion as
all the applications are tried to be mapped within a small
region. In the second method, to map the initial tasks,
clusters are found by partitioning the NoC into regions and
the initial tasks are placed at the centre of these clusters. The
placement of initial tasks in the clusters is shown in figure 3.
The cluster boundaries are virtual so more than one
application can share some parts of a given region. This
work considers the clustering approach.

The Manager Processor (M) knows only the initial tasks.
It does not know the whole application graphs. When initial
tasks start their execution, communication requests are sent
to the M to map the slave tasks at run-time. Efficient run-
time mapping algorithms are required in order to map these
new requested tasks for better performance gain. In next
sub-sections our run-time packing-based mapping heuristics
are presented.

B. Mapping Algorithm 1
This algorithm is based on the packing strategy

discussed in section IV along with the search space (circular
search space) of Nearest Neighbor (NN) heuristic. If resource
at the same node is not able to support the task then a free
node able to execute the requested task around the node
making the request is searched according to the packing
strategy. The search space to map a task goes into circular
fashion i.e. first at zero hop distance, if no resource is
supported then at hop distance of one and so on. The search
space goes on up to the NoC limit (step 12 in Algorithm 1).
In our algorithm same search strategy along with the packing
strategy is applied as explained in Algorithm 1 on the next
page.

To map multiple applications onto the MPSoC platform,
algorithm 1 is applied for each application. First, suitable
clusters for each application are found and initial tasks are
mapped at the centre of the clusters as in figure 3. Next, new
requested tasks are mapped dynamically, by applying
packing strategy along with the NN search strategy as
described by algorithm 1.

Our run-time mapping algorithm inside a cluster is light
weight in terms of total execution time and average channel

136

load. The algorithm tries to map the communicating tasks in
close proximity in a compact manner in order to reduce the
communication overhead and so the communication time.
Thus total execution time also gets reduced. Average channel
load also depends on communication overhead, therefore it is
also reduced.

Algorithm 1: Run-time mapping

Input: TG(T,E), AG(P,V)
Output: mpng (mapping TG(T,E) AG(P,V))
type (ti): type of task (HW, SW or INI)
type(pi): type of tile (HW, SW or INI)
NFR[type]: number of free re ource(s) of type type in NoC s

r t(1) Find a suitable cluster fo he application (from figure 3)
(2) Map the initial task (INI T) at the centre of the cluster
(3) for all ti T (except INI, already mapped)
(4) for all unmapped ti that is requested
(5) if (NFR[type(ti)] != 0)
(6) if (at requesting node numberFreeResources > 0)
(7) if (type(ti)== type(pi) at zero hop_distance)
(8) Select requesting node pi P to map ti
(9) insert(pi to mpng); update(resources by mpng)
(10) wait and go back to (4) if new task is requested
(11) else
(12) for hop_distance = 1 to NoC limit
(13) Select left and down side node(s) (near

requesting node)

(14) if (node(s) supported)
(15) Select first free supported node pi P to map ti
(16) insert(pi to mpng); update(resources by mpng)
(17) wait and go back to (4) if new task is requested
(18) else
(19) Select right and up side node(s) (near

requesting node)
(20) if (node(s) supported)
(21) Select first free supported node pi P to map ti
(22) insert(pi to mpng); update(resources by mpng)
(23) wait and go back to (4) if new task is requested
(24) end for
(25) else
(26) insert(ti to Queue(type(ti)))
(27) wait until NFR[type(ti)] != 0 (updated at run-time)
(28) if (NFR[type(ti)] != 0)
(29) release(ti from Queue(type(ti)) and go back to (6))
(30) end for
(31) end for

The algorithm first tries to map a requested task at same
node (hop distance zero). If same node cannot support the
task then only left and down side node(s) at hop distance
one is (are) searched and task is mapped onto one of the
capable node in order to map the tasks of an application in
bottom-left fashion. If neither left nor down side node(s)
is(are) able to execute the task, then the task is mapped to
the top or right side node(s) whichever is able to execute the

task and found as first free. If no node is able to execute the
task at hop distance one then the search space goes to hop
distance of two and so on. The task is mapped in the same
manner at each hop distances and platform resources are
updated when a task gets mapped. If none of the PEs in the
NoC is able to execute a task, then the task is placed in its
corresponding queue and waits until a resource become free
that can execute the task. The same process is repeated for
each unmapped task that is requested in order to map all the
tasks of an application. The same procedure is adopted for
all the applications to be mapped.

C. Mapping Algorithm 2
This algorithm is combination of the above algorithm

(Algorithm 1) and path load (PL) computation approach.
For each mapping z, PL is computed by Equation (1), where
rch(i,j) and rch(j,i) are the rates in the individual channels, from
the master to the new slave and the rates in the channels in
opposite direction.

),(),(cos ijchjichz rrt (1)

Algorithm 2: Run-time mapping

In algorithm 1, path load computation is incorporated by
replacing the lines (15) and (21) by:

Calculate path load for node(s) (from equation 1)
Select node pi with minimum path load

The rest of the lines remain same as in algorithm 1.

 As this heuristic includes the path load computation, hence
it is a congestion aware mapping heuristic that tries to
distribute the channel load in the NoC. Thus, in addition to
mapping the tasks in close proximity to avoid the
communication overhead between the tasks, this heuristic
also tries to distribute the channel load more uniformly,
resulting in reduced average channel load.

VI. EXPERIMENTS AND RESULTS
Experiments are performed by ModelSim co-simulation

(System-C for applications and RTL-VHDL for the NoC).
The results evaluated are total execution time and average
channel load of applications. This section describes the
experimental setup followed by the results.

A. Experimental Setup
Experiments are performed on the simulation platform

similar to that in [23]. This section describes the
experimental set up used to perform the experiments.

Each application is modeled as in figure 2, with an initial
task, hardware tasks and software tasks. The values present
on the edges represent the volume and rates of data to be
sent and received by the master as explained in definition 1
of section IV. The task processing time is fixed at 25
microseconds. Rates are fixed from 5 to 20% of the
available channel bandwidth, using a Pareto On-Off

137

distribution. Each task transmits from 200 to 500 packets
with size varying from 100 to 400 16-bit flits.

The evaluated scenarios are:
Applications having hardware communicating tasks
at leaf as in figure 4(a)
Applications having hardware communicating tasks
in between initial and leaf tasks as in figure 4(b)

In each scenario 20 identical applications, each one with
10 tasks are taken with varying injection rate (% of
available channel bandwidth).

 (a) (b)

Figure 4. Applications for two Scenarios. (a): Application for scenario 1
and (b): Application for scenario 2

The NoC is modeled in VHDL [24], in an 8×8 2D-mesh
topology. NoC is responsible for data transfer between the
tasks. As handshake protocol is used to transfer the data
therefore each flit is transmitted in two clock cycles,
limiting the available channel bandwidth to 50% of its
capacity. In the NoC (figure 5) one node is used as Manager
Processor (M), 47 nodes as software resources and
remaining 16 nodes contain large enough hardware
resources such that at each node two tasks can run in
parallel in these hardware. Thus there are effectively 32
hardware resources at 16 hardware node locations.

Figure 5 shows the NoC model used. The routers contain
set of software and hardware (Reconfigurable Logic)
processing elements. The data is transferred between the
processing elements through the routers using the XY
routing algorithm. The M is placed almost in the middle of
the NoC so that it can take of all the processing elements
equally.

The point should be kept in mind that the M does not
know the whole application graphs. It knows only the initial
tasks. When initial tasks start their execution, the slave tasks
are mapped dynamically, according to the communication
request.
 The processing elements (PEs) are modeled using System-
C. Two different System-C threads are used to model the
PEs, one for the M and another for rest of the PEs as
MPthread and TASKthread respectively. The MPthread is
responsible for the MPSoC resource management, task
mapping, task scheduling and task configuration. Also, this
thread contains channels and PEs matrix to manage system
use and scheduling queues. The TASKthread is responsible
for the task behavior implementation that is described by a

Figure 5. Our 8 x 8 NoC Model containing types of nodes used.

configuration file. This file contains execution time and
communication rates and these values can be customized.

In the current work, software resources can execute only
one task but the hardware resources are large enough to
execute two tasks in parallel. Multi-tasking software
resources along with multi-tasking hardware resources will
be considered as future work.

B. Experimental Results
Results are obtained for the state-of-the-art run-time
mapping heuristics from the previous platform where each
node was able to support only one task and from our
architecture described in experimental setup. The
performance improvements are described. Results obtained
from our proposed heuristics show further performance
improvement when compared with state-of-the-art run-time
mapping heuristics. Results are simulated for rate of 5-20%
of the available channel bandwidth. Without loss of
generality, here we have shown results for 5% only.

1) Total Execution Time

Total execution time for each task comprises of mapping
time (the time to find the placement), configuration time,
communication time, computation time and waiting time
when no resource is free in the platform. Out of all these
portions contributing to total execution time, the
communication time dominates. The allocation time
consists of mapping time and configuration time and is
indirectly considered.

Here, as hardware nodes support more than one tasks in
parallel so at run-time, two hardware communicating tasks
are mapped on one node, reducing the communication
overhead between the tasks that results in reduced
communication time. Additionally, when the packing
strategy is also applied, the tasks are mapped in close
proximity, resulting in further reduction of communication

138

(a) Scenario 1

(b) Scenario 2

Figure 6. Graphs showing Total Execution time for the two simulated
scenarios.

overhead and so the communication time. Thus with our
approach total execution time is greatly reduced. It has also
been seen that the mapping time contributing to total
execution time gets reduced because we have reduced the
search space (explained in section V) to find the placement
of a task.

Graphs in figure 6 show the total execution time taken by
20 identical applications for the two scenarios discussed in
experimental setup sub section. The results show the total
execution time taken by NN and BN heuristics on the older
platform (each node support only one task) and on the new
platform (hardware resource support more than one task)
along with the execution time taken by Algorithm 1 (ALG1)
and Algorithm 2 (ALG2) on the new platform. The
percentage gain is shown with respect to the execution time
on older platform.

The results show that in scenario 1, our mapping strategy
reduces the total execution time by 12.40% for ALG1 when
compared with NN on older architecture and by 12.27% for
ALG2 compared to BN on older architecture. In scenario 2,
it is reduced by 3.20% for ALG1 with respect to NN on
older architecture and 2.30% for ALG2 when compared
with BN on older architecture. NN and BN show significant
reduction in total execution time when compared with the
results from older architecture for both the evaluated
scenarios. Our extra experimental results confirm that new
algorithms get similar improvement over NN and BN for
other rates too.

(a) Scenario 1

(b) Scenario 2

Figure 7. Graphs showing Average Channel Load for the two simulated
scenarios.

2) Average Channel Load

The average channel load represents the NoC use. In our
mapping algorithms, ALG1 does not consider traffic during
mapping, but explores the proximity of communicating
tasks. In second algorithm (ALG2) we consider the traffic as
well during mapping, thus trying to distribute the channel
load more uniformly.

In the new platform, the communicating tasks get mapped
on same node, reducing the communication overhead
between the tasks. As the channel load directly depends on
communication overhead, thus it gets reduced. The packing
strategy further reduces the communication overhead.

Graph in figure 7 show the average channel load for the
two scenarios. Average channel load is represented as % of
bandwidth. The results are evaluated for NN, BN, ALG1
and ALG2 on new platform. For comparison, the results are
evaluated for NN and BN on the older platform too.
 In scenario 1, ALG1 and ALG2 reduce the average
channel load by 27.91% and 23.53% respectively and in
scenario 2 by 26.82% and 24.60% respectively when
compared with the average channel load from NN and BN
heuristics on the older platform. NN and BN also reduce the
average channel load significantly when compared with the
results obtained from the older platform for both the
evaluated scenarios. We have got similar improvements for
other rates too.

139

VII. CONCLUSION
This paper details our packing strategy and two run-time

mapping heuristics based on it, to map the applications
efficiently onto an 8 × 8 NoC-based heterogeneous MPSoC.
First heuristic tries to map the tasks of an application in
close proximity, reducing the communication overhead
(communication time) between the communicating tasks.
The second heuristic considers traffic in addition to the
proximity of tasks while mapping, resulting in more
uniformly distributed channel load. The hardware resources
(Reconfigurable Logic) present in the platform support two
tasks in parallel, resulting in further reduction of
communication overhead. Our mapping heuristics reduce
the average channel load by a large amount for both the
evaluated scenario. The total execution time for the first
evaluated scenario is reduced significantly with a small
improvement in the second evaluated scenario. State-of-the-
art run-time mapping heuristics also gets performance
improvement when evaluated on the new platform. The
improvements are clearly enunciated in the experiments and
results section.

The MPSoC platform considered in this work contains
software processing elements that can support only one task
and hardware processing elements (Reconfigurable Logic)
that are able to support more than one task in parallel. In
future, we plan to extend all the platform resources as
multitasking processors along with the hardware resources
and evaluation of different benchmarks on the platform.

ACKNOWLEDGMENTS

We thank Mr. Ewerson Carvalho (first author of the paper
[23]) for providing us the basic simulation environment and
helping us to extend it for our idea.

REFERENCES
[1] Jerraya, A.; Tenhunen, H.; Wolf, W. Guest Editors' Introduction:

Multiprocessor Systems-on-Chips. IEEE Computer, v.38 (7), 2005.
[2] Benini, L. and Micheli, G. Networks on Chips: A new SoC paradigm.

IEEE Computer, v.35(1), 2002.
[3] Nollet, V.; Marescaux, T.; Avasare, P.; Mignolet, J-Y. Centralized

Run-Time Resource Management in a Network-on-Chip Containing
Reconfigurable Hardware Tiles. DATE, 2005.

[4] Smit, L.; Smit, G.; Hurink, J.; Broersma, H.; Paulusma, D.; Wolkotte,
P. Run-time mapping of applications to a heterogeneous
reconfigurable tiled system on chip architecture. FPL, 2004.

[5] Vangal, S. ; Howard, J. ; Ruhl, G. ; Dighe, S. ; Wilson, H. ; Tschanz,
J. ; Finan, D. ; Iyer, P. ; Singh, A. ; Jacob, T. ; Jain, S. ;
Venkataraman, S. ; Hoskote, Y. ; Borkar, N. ; An 80-Tile
1.28TFLOPS Network-on-Chip in 65 nm CMOS. ISSCC, 2007.

[6] Tilera Corporation. TILE64TM Processor. Product Brief, 2007.
[7] Lin, L. ; Wang, C. ; Huang, P. ; Chou, C. ; Jou, J. Communication-

driven task binding for multiprocessor with latency insensitive
network-on-chip. ASPDAC, 2005.

[8] Hu, J.; Marculescu, R. Energy- and Performance-Aware Mapping for
Regular NoC Architectures. IEEE Transaction on Computer-Aided
Design of Integrated Circuits and Systems, v.24(4), 2005.

[9] Marcon, C.; Borin, A.; Susin, A.; Carro, L.; Wagner, F. Time and
Energy Efficient Mapping of Embedded Applications onto NoCs.
ASP-DAC, 2005

[10] Ngouangal, A.; Sassatelli, G.; Torres, L.; Gil, T.; Soares, A.; Susin,
A. A contextual resources use: a proof of concept through the
APACHES platform. DDECS, 2006.

[11] Wronski, F.; Brião, F.; Wagner, R. Evaluating Energy-aware Task
Allocation Strategies for MPSoCs. DIPES, 2006.

[12] Bertozzi, S.; Acquaviva, A.; Bertozzi, D.; Poggiali, A. Supporting
task migration in multiprocessor systems-on-chip; a feasibility study,
DATE, 2006.

[13] Kalte, H.; Lee, G.; Porrmann, M. Context Saving and Restoring for
Multitasking in Reconfigurable Systems. FPL, 2005.

[14] http://view.eecs.berkeley.edu/wiki/Chip_Multi_Processor_Watch,
Oct, 2008.

[15] Murali, S.; Coenen, M.; Radulescu, A.; Goossens, K.; De Micheli, G.
A methodology for mapping multiple use-cases onto networks-on-
chip. DATE, 2006

[16] Ruggiero, M.; Guerri, A.; Bertozzi, D.; Poletti, F.; Milano, M.
Communication-aware allocation and scheduling framework for
stream-oriented multi-processor systems-onchip. DATE, 2006.

[17] Smit, G.; Kokkeler, A.; Wolkotte, P.; Burgwal, M. Multi-core
Architectures and Streaming Applications. SLIP, 2008.

[18] Nollet, V.; Avasare, P.; Eeckhaut, H.; Verkest, D.; Corporaal, H.
Run-time Management of a MPSoC Containing FPGA Fabric Tiles.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
Vol. 16, No. 1, 2008.

[19] Holzenspies, P.; Hurink, J..; Kuper, J.; Smit G. Run-time Spatial
Mapping of Streaming Applications to a Heterogeneous Multi-
Processor System-on-Chip (MPSoC). DATE, 2008.

[20] Faruque, M. A. A.; Krist, R.; Henkel, J. ADAM: Run-time Agent-
based Distributed Application Mapping for on-chip Communication.
DAC, 2008.

[21] Chou, C.-L. and Marculescu, R. Incremental run-time application
mapping for homogeneous NoCs with multiple voltage levels.
Haraware/software Codesign and system synthesis
(CODES+ISSS’07), 2007

[22] Lei, T. and Kumar, S. A two-step genetic algorithm for mapping task
graphs to a network on chip architecture. Digital Systems Design
(DSD), 2003.

[23] Carvalho, E.; Moraes, F. Congestion-aware task mapping in
heterogeneous MPSoCs. System-on-Chip (SoC), 2008

[24] Moraes, F.; Calazans, N.; Mello, A.; Moller, L.; Ost, L. Hermes: an
Infrastructure for Low Area Overhead Packet-switching Networks on
Chip. Integration, the VLSI Journal, Vol 38-1, 2004

140

