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Abstract— Mapping of applications onto Multiprocessor 
System-on-Chip (MPSoC) can be realized either at design-time 
or run-time. At any time the number of tasks executing in 
MPSoC platform can exceed the available resources, requiring 
efficient run-time mapping techniques to meet the real-time 
constraints of the applications. This paper presents two run-
time mapping heuristics for mapping the tasks of an 
application in close proximity so as to minimize the 
communication overhead. In particular, the communication 
overhead between two adjacent hardware tasks is eliminated 
by mapping them onto the same reconfigurable processing 
node. We show that the proposed approach is capable of 
alleviating Network-on-Chip (NoC) congestion bottlenecks to 
optimize the overall performance. Based on our investigations 
to map the tasks of applications’ at run-time onto an 8×8 NoC-
based Heterogeneous MPSoC, our mapping heuristics are 
capable of reducing total execution time and average channel 
load of applications when compared to state-of-the-art run-
time mapping heuristics. 

Keywords- Multiprocessor System-on-Chip (MPSoC) Design, 
Network-on-Chip (NoC), Run-time mapping, Mapping 
Algorithms.

I.  INTRODUCTION 
The complexity of embedded software applications is 

now at a point where these applications cannot be supported 
by a single general purpose processor, inevitably requiring 
high performance computing platforms. The advancement in 
Nanotechnology has made it feasible to integrate several 
embedded processing elements in a single chip to develop 
Multiprocessors System-on-Chip. MPSoCs are solution to 
these complex applications in order to meet the performance 
requirements [1].  

The communication infrastructure required to have proper 
communication amongst multiple PEs can be bus-based, 
point-to-point or Networks-on-Chip (NoCs)-based [2]. The 
use of NoC based communication infrastructure is 
compulsory as NoCs have several advantages over others, 
such as scalability and shorter wires, which minimizes 
power consumption. In order to meet the ever-rising 
performance constraints, NoCs can integrate instruction set 
processors (ISPs), specialized processing elements like 
Digital Signal Processors (DSPs), FPGA fabric tiles, 
dedicated intellectual property cores (IPs) and specialized 
memories on a single chip towards the development of an 
MPSoC [3][4]. 

The homogeneous MPSoCs [5][6][7], consisting of 
identical processing elements can support some 
applications, whereas heterogeneous MPSoCs consisting of 
different types of processing elements can support wider 
variety of applications. Heterogeneous MPSoCs exploit the 
distinct features of different processing elements to improve 
the performance.  

Most of the work in literature present static mapping 
techniques [8][9] that cover only certain scenarios. These 
techniques find the best placement of tasks at design-time 
and hence these are not suitable for dynamic workloads. 
There are a few works which focus on dynamic approaches 
[10][11]. In dynamic approach tasks are loaded into the 
system at run-time. Task migration [3][12] can also be used 
to insert a new task into the system at run-time. In 
Heterogeneous MPSoCs, task migration is used at run-time 
to improve the performance. In task migration the tasks are 
relocated from one processing element to another processing 
element when a performance bottleneck is detected or when 
the workload needs to be distributed more homogeneously. 
Issues related to the task migration such as the cost to 
interrupt a given task, saving its context, transmitting all of 
the data to a new processing element and restarting the task 
in the new processing element are discussed in [3], [12] and 
[13]. 

This work describes two new run-time mapping heuristics 
based on our packing strategy and their performance 
evaluation for a NoC-based heterogeneous MPSoC. State-
of-the-art run-time mapping heuristics do not consider 
multitasking resources in the platform and also do not 
perform well when applied to different scenarios. The 
presented heuristics developed with the packing strategy 
consider multitasking resources and give better performance 
compared to state-of-the-art mapping heuristics. The 
MPSoC platform consists of software and hardware 
(Reconfigurable Logic) processing elements. The software 
processing elements can support only one task whereas the 
hardware processing elements considered here are large 
enough that can support more than one task in parallel. At 
run-time, the adjacent hardware communicating tasks of an 
application may get mapped on same reconfigurable 
processing node, resulting in almost no communication 
overhead between the tasks. The heuristics try to map the 
tasks of an application in close proximity within a particular 
region in order to further reduce the communication 
overhead between the communicating tasks, thus resulting 
in a significant performance improvement. The performance 
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metric includes overall execution time and average channel 
load.  

  The rest of the paper is organized as follows: Section II 
describes related works. Section III presents the MPSoC 
architecture. In Section IV, we present our packing strategy. 
Section V describes the task mapping algorithms. 
Experimental setup and the results are presented in Section 
VI with Section VII concluding the paper and future 
directions. 

II. RELATED WORK 
Several chip multiprocessors are being developed by 

industry [14]. Some domain specific multiprocessors, 
network processors and general purpose multiprocessors 
have already been developed by industry for different type 
of computation requirements. 

  Static mapping techniques for NoC-based and bus-based 
MPSoCs are presented in [8][9][15] and [16] to solve the 
problem of mapping. These techniques find the fix 
placement of tasks at design time with a well known 
computation and communication behavior. Therefore, these 
mapping techniques are not suitable for an adaptive system 
that changes its configuration over time and requires re-
mapping/run-time mapping of applications.  

Smit et al. [4] present a run-time task assignment 
algorithm to map a task-graph on an MPSoC platform. The 
algorithm maps a task before all other task that needs a 
scarce resource by taking availability of resources into 
account. Efficient heterogeneous multi-core architectures 
for streaming applications and run-time mapping of these 
applications onto these multi-core architectures are 
presented in [17]. 

Nollet et al. [18] describe a run-time task assignment 
heuristic for efficiently mapping the tasks in a 
multiprocessor systems-on-chip containing FPGA fabric 
tiles. With the presence of FPGA fabric tiles, algorithm is 
capable of managing a configuration hierarchy and it 
improves the task assignment success rate and quality.  

Holzenspies et al. [19] present a run-time spatial mapping 
technique consisting of four steps to map the streaming 
applications onto a heterogeneous MPSoC. The algorithm is 
implemented on an ARM926 running at 100 MHz and it 
takes less than 4 ms to run the HIPERLAN/2 example.   

Faruque et al. [20] present a run-time agent based 
distributed application mapping technique for NoC-based 
heterogeneous MPSoCs. The technique presented tries to 
map the applications in a distributed manner using an agent-
based approach. The approach reduces the monitoring 
traffic and computational effort for the run-time mapping 
algorithms. 

Ngouanga et al. [10] describe a mapping technique based 
on the attraction forces between communicating tasks that 
tries to place them near to each other. In [21] and [22] run-
time mapping techniques to map the tasks onto MPSoC 

platforms are presented. The MPSoC platform in [21] is 
homogeneous while in [22], it is heterogeneous. 

Task Migration mechanisms are presented in [3][18]. For 
migrating a task from one IP to another, the method in [3] 
uses task migration points as a point of reference. Authors 
in [18] use checkpoints, to define when a given task can be 
migrated. 

Carvalho et al. [23] present heuristics for run-time 
mapping of tasks in NoC-based heterogeneous MPSoCs. 
Tasks are mapped on the fly, according to the 
communication requests and the load in the NoC links. The 
target MPSoC architecture contains software and hardware 
processing elements. Each processing element can support 
only one task. Differently from this, in our target MPSoC 
architecture the hardware processing (Reconfigurable Logic) 
elements can support more than one task in parallel. At run-
time if two adjacent hardware communicating tasks of an 
application get mapped on same processing element, then 
the communication overhead between the tasks is greatly 
reduced. Additionally, the mapping heuristics proposed here 
tries to map the communicating tasks of an application close 
to each other so as to minimize the communication overhead 
in order to further improve the performance. Mapping 
heuristics Nearest Neighbor (NN) and Best Neighbor (BN) 
presented in [23] are taken for evaluation and performance 
comparison with our proposed mapping heuristics. 

III. TARGET MPSOC ARCHITECTURE 
MPSoC architecture used in this work contains a set of 

different processing elements which interact via a 
communication network [24]. Software tasks execute in 
instruction set processors (ISPs) and hardware tasks execute 
in reconfigurable logics (reconfigurable area-RA) or in 
dedicated IPs. The reconfigurable areas or blocks 
considered in this work are large enough that can support 
more than one hardware tasks in parallel. The 
communication network uses message passing protocol for 
inter-task communication similar to that described in [23]. 

 
 

 

Figure 1. Conceptual MPSoC Architecture 
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Among the available processing nodes, one of the 
processing node is used as the Manager Processor (M) that 
is responsible for task scheduling,  task binding, task 
placement (mapping), task migration, resource control and 
reconfiguration control. The M knows only the initial tasks 
of the applications. The initial task of each application is 
started by the M and new communicating tasks are loaded 
into the MPSoC platform at run-time from the task memory 
when a communication to them is required and they are not 
already mapped. 

In this work the focus is on resource control, task 
binding and task placement (mapping). The resources status 
is updated at run-time to provide the Manager Processor with 
an accurate information about the resource occupancy as the 
mapping decision is taken based on the PEs and NoC use. 
For task scheduling queue strategy is used and there are 
three queues, one for each type (i.e. hardware, software and 
initial) of task. If there are no free resources in the system the 
task enters into their corresponding queue and waits until a 
resource of same type does not get free. 

IV. OUR PACKING STRATEGY 
This section introduces our packing strategy for efficient 

mapping of applications onto a NoC-based heterogeneous 
MPSoC. 

A. Definitions 
    Definitions necessary to explain our packing strategy are 
as follows: 
Definition 1: An application task graph is represented as an 
acyclic directed graph TG = (T, E), where T is set of all 
tasks of an application and E is the set of all edges in the 
application. Figure 2 (a) describes an application having 
initial, software and hardware tasks along with the edges (E) 
connecting these tasks and (b) shows the master-slave pair 
(communicating tasks). The starting task of an application is 
the initial task that has no master. E contains all the pair of 
communicating tasks and is represented as (mtid, stid, (Vms, 
Rms, Vsm, Rsm)), where mtid represents the master task 
identifier, stid represents the slave task identifier; Vms and Rms 
are the data volumes and data rate sent respectively from 
master to slave; Vsm and Rsm are the data volumes and data 
rate sent respectively from slave to master respectively. The 
message rate is described as percentage of available link 
bandwidth. XY routing algorithm is used to transmit and 
receive the messages and both rates are relevant in the 
model as the path taken by messages is different. In XY 
routing first the packet is transferred in X-direction then in 
Y-direction for transferring packets from one node to 
another node. 
Definition 2: A NoC-based heterogeneous MPSoC 
architecture is a directed graph AG = (P, V), where P is the 
set of tiles pi and vi,j  V presents the physical channel 
between two tiles pi and pj. A tile pi  P consists of a router, 
a network interface, a heterogeneous processing element, 
local memory and a cache. 

 
                              (a)                  (b) 

 
Figure 2. Application Modeling and Master-Slave pair 

 
Definition 3: The application mapping is represented by 
mpng : ti ( ) |  pi (  P) to map the tasks of the application  
onto the NoC-based heterogeneous MPSoC. 

B. The Packing Strategy 
State-of-the-art run-time mapping heuristics to map the 

applications onto an MPSoC platform consider single task 
supported processing elements and do not perform well 
when applied to different scenarios. Here, we have 
incorporated large enough hardware resources in the 
platform that can support more than one task in order to map 
two tasks on one processing element. The mapping 
heuristics developed with the packing strategy try to map 
the communicating tasks in close proximity reducing the 
communication overhead, resulting in improved overall 
performance compared to the state-of-the-art mapping 
heuristics. 

 

 

Figure 3.  Initial tasks placement for mapping applications with packing 
strategy 

In our packing strategy, all tasks of an application are 
tried to be mapped close to each other. For each application 
to be mapped on the MPSoC platform, firstly, clusters are 
found for each application and initial tasks are placed at the 
centre of the clusters as shown in figure 3. The cluster 
boundaries are not fixed for any application and hence a 
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common region can be shared by tasks of different 
applications. These virtual clusters are used to find the 
initial task (starting task) placement in a distributed manner 
so that the new communicating tasks can be mapped close 
to each other, this greatly reduces the communication 
overhead between the communicating tasks. After the initial 
task gets mapped, new communicating tasks of an 
application are mapped according to the communication 
request. To map a requested task, firstly, the task is tried to 
map at the same node making the request as hardware 
resources can support more than one task. A task in 
supported by a processing element (PE) if type of PE is 
same as task type and there is free resource at the PE 
location. If task is not supported by the node making the 
request then it is tried to be mapped to the left or down side 
PE around the node making the request.  Now, if neither left 
nor down side processing element is able to execute the task 
only then task is tried to be mapped on the top or right side 
processing element. The same strategy is followed by each 
application to map their tasks on the MPSoC platform. 

With packing strategy the communicating tasks of an 
application are tried to map close to each other in a compact 
manner to reduce the communication overhead between the 
communicating tasks. As with this strategy, first each 
application tries to map its task towards bottom-left (either 
on bottom or left PE) side within the cluster hence the 
processing elements present on top-right edge of the cluster 
may be used by another application that is also trying to 
map its tasks towards bottom-left (either on bottom or left 
PE). In this manner if one application is getting mapped 
then the applications that are tried to be mapped on top-side, 
right-side or top-right side may get the free resources on the 
top and right edges of the first application’s cluster and 
tasks of the other applications can be mapped on these 
resources. This strategy is applied to all the applications to 
be mapped, thus most of the applications get the free 
resources from other application’s top-right edge of the 
cluster. Additionally, as hardware resources can support 
more than one task in parallel so two communicating 
hardware tasks can be mapped on one resource location, 
reducing the communication overhead and making the 
mapping more compact.  

    This strategy tries to keep the communicating tasks as 
close as possible, thus reducing the communication overhead 
between two communicating tasks. Execution time of an 
application mainly depends on computation time and 
communication time. With the help of the packing strategy 
the communication overhead is reduced, resulting in reduced 
communication time and hence the execution time. Channel 
load also gets reduced as it depends on the communication 
overhead. 

V. RUN-TIME MAPPING ALGORITHMS 
Our run-time mapping algorithms are motivated by the 

packing strategy as discussed in section IV. The given 
algorithms are light-weight in terms of execution cycles and 

channel load. First initial tasks are mapped and then new 
tasks are mapped into the MPSoC at run-time when 
communication to them is required. 

A. Initial Task Mapping 
The initial tasks are considered as software tasks so these 

are mapped onto software processing elements. Initial task 
mapping has significant impact on the performance of run-
time mapping. There are two different ways to map the 
initial tasks. In the first method, the initial tasks can be 
mapped on the first free position found in the network that 
can support the tasks. This may result the initial tasks to be 
placed very close to each other. Now, when new tasks of 
different applications are requested to be mapped, the 
applications have to share the same NoC region, resulting in 
longer waiting time for a resource to become free for a task 
to be mapped. This also increases the channel congestion as 
all the applications are tried to be mapped within a small 
region. In the second method, to map the initial tasks, 
clusters are found by partitioning the NoC into regions and 
the initial tasks are placed at the centre of these clusters. The 
placement of initial tasks in the clusters is shown in figure 3. 
The cluster boundaries are virtual so more than one 
application can share some parts of a given region. This 
work considers the clustering approach. 

The Manager Processor (M) knows only the initial tasks. 
It does not know the whole application graphs. When initial 
tasks start their execution, communication requests are sent 
to the M to map the slave tasks at run-time. Efficient run-
time mapping algorithms are required in order to map these 
new requested tasks for better performance gain. In next 
sub-sections our run-time packing-based mapping heuristics 
are presented.  

B. Mapping Algorithm 1 
This algorithm is based on the packing strategy 

discussed in section IV along with the search space (circular 
search space) of Nearest Neighbor (NN) heuristic. If resource 
at the same node is not able to support the task then a free 
node able to execute the requested task around the node 
making the request is searched according to the packing 
strategy. The search space to map a task goes into circular 
fashion i.e. first at zero hop distance, if no resource is 
supported then at hop distance of one and so on. The search 
space goes on up to the NoC limit (step 12 in Algorithm 1). 
In our algorithm same search strategy along with the packing 
strategy is applied as explained in Algorithm 1 on the next 
page. 

To map multiple applications onto the MPSoC platform, 
algorithm 1 is applied for each application. First, suitable 
clusters for each application are found and initial tasks are 
mapped at the centre of the clusters as in figure 3. Next, new 
requested tasks are mapped dynamically, by applying 
packing strategy along with the NN search strategy as 
described by algorithm 1. 

Our run-time mapping algorithm inside a cluster is light 
weight in terms of total execution time and average channel 
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load. The algorithm tries to map the communicating tasks in 
close proximity in a compact manner in order to reduce the 
communication overhead and so the communication time. 
Thus total execution time also gets reduced. Average channel 
load also depends on communication overhead, therefore it is 
also reduced.  

 
Algorithm 1: Run-time mapping 

Input: TG(T,E), AG(P,V) 
Output: mpng (mapping TG(T,E)  AG(P,V) ) 
type (ti): type of task (HW, SW or INI) 
type(pi): type of tile (HW, SW or INI) 
NFR[type]: number of free re ource(s) of type type in NoC  s

r t(1) Find a suitable cluster fo he application (from figure 3) 
(2) Map the initial task (INI T) at the centre of the cluster 
(3) for all ti  T (except INI, already mapped) 
(4)   for all unmapped ti that is requested  
(5)     if (NFR[type(ti)] != 0)  
(6)         if (at requesting node numberFreeResources > 0 )
(7)              if (type(ti)== type(pi) at zero hop_distance)
(8)            Select requesting node pi  P to map ti  
(9)               insert(pi to mpng); update(resources by mpng) 
(10)           wait and go back to (4) if new task is requested
(11)    else 
(12)       for hop_distance = 1 to NoC limit
(13)        Select left and down side node(s) (near       

requesting   node) 
                          

(14)     if (node(s) supported) 
(15)        Select first free supported node pi  P to map ti 
(16)           insert(pi to mpng); update(resources by mpng) 
(17)       wait and go back to (4) if new task is requested 
(18)        else 
(19)       Select right and up side node(s) (near 

requesting      node) 
(20)      if (node(s) supported) 
(21)       Select first free supported node pi  P to map ti 
(22)       insert(pi to mpng); update(resources by mpng) 
(23)       wait and go back to (4) if new task is requested 
(24)   end for   
(25)  else 
(26)      insert(ti to Queue(type(ti)))  
(27)      wait until NFR[type(ti)] != 0 (updated at run-time)  
(28)      if (NFR[type(ti)] != 0) 
(29)       release(ti from Queue(type(ti) ) and go back to (6)  )
(30) end for 
(31) end for 
 

The algorithm first tries to map a requested task at same 
node (hop distance zero). If same node cannot support the 
task then only left and down side node(s) at hop distance 
one is (are) searched and task is mapped onto one of the 
capable node in order to map the tasks of an application in 
bottom-left fashion. If neither left nor down side node(s) 
is(are) able to execute the task, then the task is mapped to 
the top or right side node(s) whichever is able to execute the 

task and found as first free. If no node is able to execute the 
task at hop distance one then the search space goes to hop 
distance of two and so on. The task is mapped in the same 
manner at each hop distances and platform resources are 
updated when a task gets mapped. If none of the PEs in the 
NoC is able to execute a task, then the task is placed in its 
corresponding queue and waits until a resource become free 
that can execute the task. The same process is repeated for 
each unmapped task that is requested in order to map all the 
tasks of an application. The same procedure is adopted for 
all the applications to be mapped. 

C. Mapping Algorithm 2 
This algorithm is combination of the above algorithm 

(Algorithm 1) and path load (PL) computation approach. 
For each mapping z, PL is computed by Equation (1), where 
rch(i,j) and rch(j,i) are the rates in the individual channels, from 
the master to the new slave and the rates in the channels in 
opposite direction. 
 

),(),(cos ijchjichz rrt    (1) 
 
Algorithm 2: Run-time mapping

In algorithm 1, path load computation is incorporated by 
replacing the lines (15) and (21) by: 

Calculate path load for node(s)  (from equation 1) 
Select node pi with minimum path load  

The rest of the lines remain same as in algorithm 1. 
   
  As this heuristic includes the path load computation, hence 
it is a congestion aware mapping heuristic that tries to 
distribute the channel load in the NoC. Thus, in addition to 
mapping the tasks in close proximity to avoid the 
communication overhead between the tasks, this heuristic 
also tries to distribute the channel load more uniformly, 
resulting in reduced average channel load. 

VI. EXPERIMENTS AND RESULTS 
Experiments are performed by ModelSim co-simulation 

(System-C for applications and RTL-VHDL for the NoC). 
The results evaluated are total execution time and average 
channel load of applications. This section describes the 
experimental setup followed by the results. 

A. Experimental Setup 
Experiments are performed on the simulation platform 

similar to that in [23]. This section describes the 
experimental set up used to perform the experiments. 

Each application is modeled as in figure 2, with an initial 
task, hardware tasks and software tasks. The values present 
on the edges represent the volume and rates of data to be 
sent and received by the master as explained in definition 1 
of section IV. The task processing time is fixed at 25 
microseconds. Rates are fixed from 5 to 20% of the 
available channel bandwidth, using a Pareto On-Off 
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distribution. Each task transmits from 200 to 500 packets 
with size varying from 100 to 400 16-bit flits. 

The evaluated scenarios are:  
Applications having hardware communicating tasks 
at leaf as in figure 4(a)  
Applications having hardware communicating tasks 
in between initial and leaf tasks as in figure 4(b)  

In each scenario 20 identical applications, each one with 
10 tasks are taken with varying injection rate (% of 
available channel bandwidth).  

 
 

 
 (a)                    (b)  

Figure 4.  Applications for two Scenarios. (a): Application for scenario 1 
and (b): Application for scenario 2 

The NoC is modeled in VHDL [24], in an 8×8 2D-mesh 
topology. NoC is responsible for data transfer between the 
tasks. As handshake protocol is used to transfer the data 
therefore each flit is transmitted in two clock cycles, 
limiting the available channel bandwidth to 50% of its 
capacity. In the NoC (figure 5) one node is used as Manager 
Processor (M), 47 nodes as software resources and 
remaining 16 nodes contain large enough hardware 
resources such that at each node two tasks can run in 
parallel in these hardware. Thus there are effectively 32 
hardware resources at 16 hardware node locations.  

Figure 5 shows the NoC model used. The routers contain 
set of software and hardware (Reconfigurable Logic) 
processing elements. The data is transferred between the 
processing elements through the routers using the XY 
routing algorithm. The M is placed almost in the middle of 
the NoC so that it can take of all the processing elements 
equally.  

The point should be kept in mind that the M does not 
know the whole application graphs. It knows only the initial 
tasks. When initial tasks start their execution, the slave tasks 
are mapped dynamically, according to the communication 
request. 
    The processing elements (PEs) are modeled using System-
C. Two different System-C threads are used to model the 
PEs, one for the M and another for rest of the PEs as 
MPthread and TASKthread respectively. The MPthread is 
responsible for the MPSoC resource management, task 
mapping, task scheduling and task configuration. Also, this 
thread contains channels and PEs matrix to manage system 
use and scheduling queues. The TASKthread is responsible 
for the task behavior implementation that is described by a  
 

 

Figure 5. Our 8 x 8 NoC Model containing types of nodes used.  
 
configuration file. This file contains execution time and 
communication rates and these values can be customized. 

In the current work, software resources can execute only 
one task but the hardware resources are large enough to 
execute two tasks in parallel. Multi-tasking software 
resources along with multi-tasking hardware resources will 
be considered as future work. 

B. Experimental Results 
Results are obtained for the state-of-the-art run-time 
mapping heuristics from the previous platform where each 
node was able to support only one task and from our 
architecture described in experimental setup. The 
performance improvements are described. Results obtained 
from our proposed heuristics show further performance 
improvement when compared with state-of-the-art run-time 
mapping heuristics. Results are simulated for rate of 5-20% 
of the available channel bandwidth. Without loss of 
generality, here we have shown results for 5% only. 

1) Total Execution Time 

Total execution time for each task comprises of mapping 
time (the time to find the placement), configuration time, 
communication time, computation time and waiting time 
when no resource is free in the platform. Out of all these 
portions contributing to total execution time, the 
communication time dominates. The allocation time 
consists of mapping time and configuration time and is 
indirectly considered.  

Here, as hardware nodes support more than one tasks in 
parallel so at run-time, two hardware communicating tasks 
are mapped on one node, reducing the communication 
overhead between the tasks that results in reduced 
communication time.  Additionally, when the packing 
strategy is also applied, the tasks are mapped in close 
proximity, resulting in further reduction of communication  
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(a) Scenario 1 

 

 
(b) Scenario 2 

 
Figure 6. Graphs showing Total Execution time for the two simulated 
scenarios. 
 
overhead and so the communication time. Thus with our 
approach total execution time is greatly reduced. It has also 
been seen that the mapping time contributing to total 
execution time gets reduced because we have reduced the 
search space (explained in section V) to find the placement 
of a task. 

Graphs in figure 6 show the total execution time taken by 
20 identical applications for the two scenarios discussed in 
experimental setup sub section. The results show the total 
execution time taken by NN and BN heuristics on the older 
platform (each node support only one task) and on the new 
platform (hardware resource support more than one task) 
along with the execution time taken by Algorithm 1 (ALG1) 
and Algorithm 2 (ALG2) on the new platform.  The 
percentage gain is shown with respect to the execution time 
on older platform.

The results show that in scenario 1, our mapping strategy 
reduces the total execution time by 12.40% for ALG1 when 
compared with NN on older architecture and by 12.27% for 
ALG2 compared to BN on older architecture. In scenario 2, 
it is reduced by 3.20% for ALG1 with respect to NN on 
older architecture and 2.30% for ALG2 when compared 
with BN on older architecture. NN and BN show significant 
reduction in total execution time when compared with the 
results from older architecture for both the evaluated 
scenarios. Our extra experimental results confirm that new 
algorithms get similar improvement over NN and BN for 
other rates too. 

 
(a) Scenario 1 

 

 
(b) Scenario 2 

Figure 7. Graphs showing Average Channel Load for the two simulated 
scenarios. 
 

2) Average Channel Load 

The average channel load represents the NoC use. In our 
mapping algorithms, ALG1 does not consider traffic during 
mapping, but explores the proximity of communicating 
tasks. In second algorithm (ALG2) we consider the traffic as 
well during mapping, thus trying to distribute the channel 
load more uniformly.  

In the new platform, the communicating tasks get mapped 
on same node, reducing the communication overhead 
between the tasks. As the channel load directly depends on 
communication overhead, thus it gets reduced. The packing 
strategy further reduces the communication overhead.  

Graph in figure 7 show the average channel load for the 
two scenarios. Average channel load is represented as % of 
bandwidth. The results are evaluated for NN, BN, ALG1 
and ALG2 on new platform.  For comparison, the results are 
evaluated for NN and BN on the older platform too. 
    In scenario 1, ALG1 and ALG2 reduce the average 
channel load by 27.91% and 23.53% respectively and in 
scenario 2 by 26.82% and 24.60% respectively when 
compared with the average channel load from NN and BN 
heuristics on the older platform. NN and BN also reduce the 
average channel load significantly when compared with the 
results obtained from the older platform for both the 
evaluated scenarios. We have got similar improvements for 
other rates too.  
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VII. CONCLUSION 
This paper details our packing strategy and two run-time 

mapping heuristics based on it, to map the applications 
efficiently onto an 8 × 8 NoC-based heterogeneous MPSoC. 
First heuristic tries to map the tasks of an application in 
close proximity, reducing the communication overhead 
(communication time) between the communicating tasks. 
The second heuristic considers traffic in addition to the 
proximity of tasks while mapping, resulting in more 
uniformly distributed channel load. The hardware resources 
(Reconfigurable Logic) present in the platform support two 
tasks in parallel, resulting in further reduction of 
communication overhead. Our mapping heuristics reduce 
the average channel load by a large amount for both the 
evaluated scenario. The total execution time for the first 
evaluated scenario is reduced significantly with a small 
improvement in the second evaluated scenario. State-of-the-
art run-time mapping heuristics also gets performance 
improvement when evaluated on the new platform. The 
improvements are clearly enunciated in the experiments and 
results section.  

The MPSoC platform considered in this work contains 
software processing elements that can support only one task 
and hardware processing elements (Reconfigurable Logic) 
that are able to support more than one task in parallel. In 
future, we plan to extend all the platform resources as 
multitasking processors along with the hardware resources 
and evaluation of different benchmarks on the platform. 
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