
Efficient Task Mapping in Multi-tasking Heterogeneous MPSoC Platforms

Amit Kumar Singh, Wu Jigang, Alok Prakash, Thambipillai Srikanthan, Douglas Maskell
Centre for High Performance Embedded Systems, Nanyang Technological University, Singapore

{amit0011, asjgwu, alok0001, astsrikan, asdouglas}@ ntu.edu.sg

Abstract - Real-time requirements of applications can limit the
number of tasks executing in a Multiprocessor System-on-Chip
(MPSoC) platform. This demand for efficient mapping
algorithm that is capable of maximizing computation
performance. This paper introduces a multi-tasking
heterogeneous MPSoC platform along with two run-time
mapping algorithms to maximize the performance by
minimizing the communication overhead. The proposed
algorithms have been shown to be capable of upholding the
proximity of tasks in order to reduce the communication
overhead by mapping the adjacent hardware tasks onto the
same reconfigurable processing element whenever possible. The
proposed approach has been shown to consistently alleviate
Network-on-Chip (NoC) congestion bottlenecks, to maximize
the performance. Based on our evaluations, we show that the
new mapping algorithms are capable of reducing average
channel load, total execution time and latency when compared
to state-of the-art run-time mapping techniques reported in the
literature.

Keywords: Multiprocessor System-on-Chip (MPSoC) design,
Hardware-Software Co-design, Heterogeneous Architectures,
Network-on-Chip (NoC), Mapping Algorithms

I Introduction
The computation complexity of embedded applications

and their performance requirements have increased
significantly and these can no more be supported by a single
general purpose processor, inevitably requiring high
performance computing platforms. These platforms can be
created by integrating several embedded processors on a
single chip towards the development of a Multiprocessor
System-on-Chip (MPSoC). MPSoC platforms [1] [2] are
solutions to these complex applications to meet the ever
rising performance requirements.

The advancement in nanotechnology will enable to
integrate thousands of processing elements in a single die by
2015 [3]. In order to achieve high computation performance
along with energy efficiency, the MPSoCs need to contain
several type of processing elements, ranging from instruction
set processors to application specific architectures [4].

The PEs present in the MPSoC platform demands a
communication infrastructure in order to have proper
communication amongst different processing elements in the
platform. Network-on-Chip (NoC) [5] is used as the
communication infrastructure as they are highly scalable and
support parallelism unlike buses and point-to-point
communication. NoCs can integrate several type of
processing elements like general purpose processors,
specialized processing elements such as Digital Signal
Processors, FPGA fabric tiles, dedicated IP-cores and
specialized memories on a single chip towards the
development of a MPSoC [4] [6].

Today’s complex applications need to be supported by
MPSoC platforms containing different type of processing
elements (PEs). Homogeneous MPSoCs [7] [8] composed of
identical PEs can’t support many applications whereas,
heterogeneous MPSoCs [4] [6], composed of different type of
PEs support wide variety of applications. Heterogeneous
MPSoCs are solutions for most of the applications to meet the
performance constraints.

Mapping applications onto MPSoC platform can be
accomplished at either design-time or run-time. Design-time
(Static) mapping techniques proposed in [9] [10] [11] find
best placement of the tasks at design-time with a well known
computation and communication behavior. They are not
suitable for dynamic workloads where number of
simultaneously running tasks may exceed the available
platform resources. Run-time mapping techniques are
required for dynamic workloads [12]. Task migration [13] is
also used for run-time application mapping by inserting a new
task into the system at run-time. At run-time, when a
performance bottleneck is detected, the task is migrated from
one PE to another, to distribute the workload more
homogeneously, in order to improve the performance.

This work presents a multitasking NoC-based
heterogeneous MPSoC platform and two new run-time
mapping heuristics based on our strategy called as packing
strategy, for efficiently mapping applications onto the
MPSoC platforms. Proposed mapping heuristics maps the
tasks of an application in a systematic manner by clearly
choosing a PE for a task and is described in detail in section
IV. The performance of the mapping heuristics is evaluated
for dynamic workloads. State-of-the-art run-time mapping
heuristics presented in [21] consider single task supported
processing elements (PEs) in the platform and do not perform
well when applied to different scenarios. The heuristics
developed by our packing strategy consider multitasking
resources in the MPSoC platform and give better
performance compared to state-of-the-art mapping heuristics
in [21]. Our MPSoC platform consists of hardware/software
resources to execute hardware/software tasks. Hardware
resources (Reconfigurable Area) are considered large enough
to support more than one task in parallel. On the other hand
software resources are considered to support only one task so
as to avoid any memory bottlenecks. Memory space is
required to store the software’s (software tasks). At run-time
adjacent (communicating) hardware tasks of an application
get mapped on same hardware node, reducing the
communication overhead between the tasks. Additionally,
our strategy maps the communicating tasks close to each
other so as to further minimize the communication overhead.
We have evaluated our mapping heuristics and
state-of-the-art run-time mapping heuristics presented in [21]

for our target MPSoC architecture and performance matrices
such as average channel load, total execution time and latency
are compared in order to show the performance
improvements.

The rest of the paper is organized as follows: Section II
presents the related work. Section III describes the MPSoC
architecture. In Section IV, we present our packing strategy.
Section V describes the mapping algorithms. Experimental
setup and the results are presented in Section VI with Section
VII concluding the paper along with future directions.

II. Related Works

The academia and companies have developed several
MPSoCs and many are on the way to be released [1]. These
MPSoCs are customized for different target market like
general purpose computing, scientific computing and
embedded computing according to their computation
requirement.

Most of the work in literature present static mapping
techniques [9] [10] [11] in order to map applications onto the
MPSoC platforms but these are not adequate for an adaptive
system that changes its behavior over time. These mapping
techniques consider fix computation and communication
behavior of a task to find its best possible placement.
Run-time mapping techniques are required for adaptive
systems that contain dynamic workload.

Nollet et al. [14] present a run-time task assignment
heuristic that performs fast and efficient task assignment in an
MPSoC. The MPSoC platform contains FPGA fabric tiles
along with other processing elements. The FPGA fabric tiles
facilitate configuration hierarchy that improves the task
assignment success rate and quality. Theocharides et al. [15]
demonstrate a run-time, system-level bidding-based task
allocation strategy for generic MPSoC architectures. The
allocation strategy gives significant performance
improvements when compared to a round robin allocation, in
popular MPSoC applications. Briao et al. [16] present
dynamic task allocation strategies in MPSoCs based on
bin-packing algorithms with task migration capabilities for
running soft real-time applications. Two types of algorithms
are combined to get better allocation results. In order to save
energy, the system turns off idle processors and applies
Dynamic Voltage Scaling to processors with slack. Smit et al.
[17] present multi-core architectures and run-time mapping
of streaming applications onto these architectures. In [4],
authors demonstrate a run-time task assignment algorithm to
map a task-graph onto an MPSoC platform. The algorithm
maps a task before all other task that needs a scarce resource,
by taking availability of resources into account. Holzenspies
et al. [18] describe a run-time spatial mapping technique
consisting of four steps to map the streaming applications
onto a heterogeneous MPSoC. The mapping solutions found
are verifiable for feasibility. The algorithm is implemented
onto an ARM926 processor running at 100 MHz and it takes
less than 4 ms to run the HIPERLAN/2 example. Ngouangal
et al. [19] describe a mapping technique based on the
attraction forces between communicating tasks that tries to
place them close to each other. While mapping tasks at

run-time, the performance requirements, the number of
available NPUs (Network Processing Units) and their
respective positions are taken into account. Chou et al. [20]
propose a run-time mapping strategy for allocating the
application tasks to platform resources in homogeneous
MPSoCs. The user behavior information is incorporated in
the resource allocation process; that allows system to better
respond to real-time changes and adapt dynamically to user
needs. By considering user behavior, 60% communication
energy is saved compared to an arbitrary task allocation
strategy. Carvalho et al. [21] present heuristics for run-time
mapping of tasks in NoC-based heterogeneous MPSoCs
where tasks are mapped on the fly, according to the
communication requests and the load in the NoC links.

III. Target MPSoC Architecture

Our MPSoC platform contains a set of different PEs which
interacts via a communication network [22] as shown in Fig.
1. PEs can support either a hardware or software tasks.
Software tasks execute in instruction set processor (ISP) and
hardware tasks execute in reconfigurable logic blocks (RA) or
in dedicated IP-cores. The RAs are considered large enough
to support more than one hardware tasks in parallel. The ISPs
are considered to support a single software task to avoid the
memory constraint issue. For inter-task communication,
message passing protocol is used by the communication
network as described in [14]. XY routing algorithm is used to
transmit and receive the messages. In XY routing, first, the
packet is transferred in X-direction then in Y-direction for
transferring packets from one processing node to another
processing node.

In the MPSoC platform, one of the ISP is used as the
Manager Processor (M) that is responsible for task mapping,
task scheduling, resource control and configuration control.
The configuration overhead results are used to simulate the
configuration control process [23].
 The initial tasks (starting tasks) for each application are
started by M and new unmapped communicating tasks are
loaded into the MPSoC at run-time from the task memory
when a communication to them is required.

Task mapping involves task binding and task placement. In
task binding, a decision is made whether the task will be
mapped on an ISP (software task) or on a RA/IP (hardware
task). As there are many ISPs and RAs in the platform, so in
task placement real position for the task to be mapped is
found. For resource control, the resources status is updated at

Fig. 1. Target MPSoC Architecture

run-time to provide the M with an accurate information about
the resource occupancy as the mapping decision is taken
based on the PEs and NoC use. Task scheduling is
implemented by the queue strategy and there are three
queuesfor hardware, software and initial tasks. A task enters
into its corresponding queue if there is no free resource in the
platform and waits until a resource of same type is not free.

IV. Proposed Packing Strategy

The proposed packing strategy for mapping the
applications onto the MPSoC architectures is described in this
section. The application, MPSoC architecture and mapping
are defined subsequently in order to explain the strategy.

Application is modeled by acyclic directed graph TG (Task
Graph) = (T, E), where T is set of tasks in the application and
E is the set of edges in the application as in Fig. 2 (a) and (b)
similar to [21]. Each application has one initial (starting) task
and various hardware/software (HW/SW) tasks. A
connection (edge) between two tasks defines master-slave
pair as in Fig 2 (c), i.e., a connection contains master and
salve tasks. The initial task has no master. Each edge in E
contains four parameters (Vms, Rms, Vsm, Rsm) as in Fig 2 (c),
where Vms and Rms represent the volume (V) and rate(R) of
data to send from master to salve (ms) and Vsm and Rsm
represent the volume (V) and rate(R) of data to send from
slave to master (sm).

MPSoC architecture is a directed graph AG (Architecture
Graph) = (P, L), where P is the set of tiles pi and li,j є L
presents the physical link between two tiles pi and pj.

Mapping of applications’ tasks onto the MPSoC
architecture is represented as mpg: ti (∈T) |→ pi (∈ P)

State-of-the-art run-time mapping heuristics Nearest
Neighbor (NN) and Best Neighbor (BN) in [21] tries to map a
slave task near the node at which master task is mapped, i.e.,
at a neighboring node. These heuristics do not consider the
node’s position while finding placement of the slave task.
This results in higher communication overhead as the slave
tasks from different applications gets mapped to any of the
neighbor node of their masters. In our packing strategy, we
systematically chose a neighboring node for the task mapping
that reduces the communication overhead. Also, by
incorporating multi-tasking hardware resources in the
MPSoC platform, the communication overhead is further
reduced as adjacent communicating hardware tasks gets
mapped onto the same processing node.

In our packing strategy, the communicating tasks of an
application are mapped close to each other in a systematic
manner so that they need not to communicate from distance
apart in order to avoid the communication overhead. Here,
the demonstration is done with nine applications at a time to
be mapped onto the MPSoC platform. To map applications,
firstly, clusters are found for each application and initial tasks
are placed at the centre of the clusters (as shown in Fig. 3). All
the tasks belonging to an application are tried to map within a
particular cluster in which its initial task is mapped. The
cluster boundaries are virtual so more than one application
can share some parts of a given region. In our approach, these

(a) (b) (c)

Fig. 2. Applications modeling (a), (b) and Master-Slave pair (c)

clusters are chosen in a distributed manner so that
communicating tasks for each application (here 9
applications) will be mapped in close proximity within a
particular cluster. Thus, there will be minimum interference
between two applications resulting in reduced channel
congestion. If initial tasks are not mapped in a distributed
manner, i.e., are mapped randomly then they might get placed
very close to each other. Now, when rest of the tasks of each
application are mapped, the applications need to share the
same NoC region that will result in longer waiting time for a
resource to become free for task mapping, and increased
channel congestion.

For each application (here 9 applications), after the initial
tasks get mapped and start their execution, new
communicating tasks are mapped according to the
communication request. To map a requested task, firstly, the
task is tried to be mapped at the same processing node making
the request as hardware resources support more than one task.
A task is supported by a processing element (PE) if the type
of PE is same as the type of the task and there is a free
resource at the PE location. If task is not supported by the
node making the request, then it is tried to be mapped at hop
distance of one. If task is not supported at hop distance one
then it is tried to be mapped at hop distance of two and so on.
The attempt goes up to the NoC limit. At each hop distance,
first, left or down side PE around the node making the request
(master task position) is selected to map the task, so that the
PEs on the top-right edge of the cluster can be used by tasks
of other applications that are also getting mapped in the
similar manner. Thus, resource utilization is increased. This
strategy is applied to each application to be mapped and most
of the applications get the free resources from other
application’s top-right edge of the cluster. If neither left nor
down side processing element is able to execute the task only,
then the task is tried to be mapped onto the top or right side
PE.

This strategy maps the communicating tasks of each
application in close proximity, thus reducing the
communication overhead. Additionally, by incorporating
multi-tasking hardware resources, adjacent communicating
hardware tasks are mapped onto the same processing node,
resulting in further reduction of communication overhead and
more compact mapping. Average channel load is reduced as
it directly depends on the congestion in the channel and
communication overhead. Total execution time mainly
depends on computation time and communication time.
Communication time is reduced by reducing the
communication overhead. The search space to find a
supported node for requested task is reduced by searching in a
systematic manner as explained above, resulting in reduced

Hardware
Resources

Software
Resources

M

Manager
Processor

M

Initial Task
Placement

Application
packing

(mapping)
direction

Virtual
Cluster

Fig. 3. Initial tasks placement for mapping applications

placement time. Thus, total execution time is also reduced.
Average packet latency depends on the distance between
source and destination PE and the congestion in the commu-
nication path. Distance between source and destination PE is
reduced by mapping the communicating tasks close to each
other and channel congestion is also reduced (explained
above), thus average packet latency is reduced.

V. Runtime Mapping Algorithms

A. First Run-Time Mapping Algorithm (RTM1)
This algorithm is based on the packing strategy (discussed

in section III) along with the search space (circular search
space) of Nearest Neighbor (NN) heuristic in [21].

To map multiple applications onto the MPSoC platform,
Algorithm RTM1 is followed by each application that is
getting mapped. First, initial tasks for each application are
mapped after finding a suitable cluster (step 1 & 2) in a
distributed manner as shown in Fig. 3. Clusters are chosen in
distributed manner to reduce the channel congestion and
waiting time to map a task as discussed in section IV. The M
knows only the initial tasks. When initial tasks start their
execution, communication requests are sent to the M to map
the slave tasks at run-time.

The run-time requested task (step 3) is mapped for sure if
there is any free supported PE (step 4) in the NoC. The task
is first tried to map at the same PE (step 5 & 6) on which its
master is mapped. If the same PE can’t support the requested
task then it is tried to map at hop distance of one. If there is
no supported resource at hop distance one then it is tried to
map at hop distance of two and so on. The search space goes
up to the NoC limit (step 9). At each hop distance first left
and down side PE(s) (step 10) are selected to map the task
and if none of them support the task then only the task is
tried to be mapped on right or upside PE(s) (step 16).

After mapping the task on a PE, the resources are updated
and the M waits for the next requested task (step 13 & 14). If
there is no free supported resource in the platform (step 19) i.
e. number of tasks exceeds the platform resources then the

Algorithm RTM1 /* First algorithm for Run-Time Mapping*/
Input: TG(T,E), AG(P,V) /* task ti ∈ T ; processing element pi ∈P */
Output: mpg (mapping TG(T,E)  AG(P,V))
1) Find a suitable cluster for the application (from Fig. 3);
2) Map the initial task (INI∈ T) at the centre of the cluster;
3) for each unmapped task ti that is requested do
4) if (there is free supported resource in the platform)
5) if (resource free at master task position)
6) Map the task and update mpg & resources;
7) wait and go back to step 4 if new task is requested;
8) else
9) for hop_distance = 1 to NoC limit do
10) Select left and down side node(s) for mapping;
11) if (node(s) support the task)
12) Select first free supported node pi є P to map ti;
13) insert(pi to mpg); update(resources by mpg);
14) wait and go back to step 4 if new task is requested;
15) else
16) Select right and up side node(s) for mapping;
17) Do similar steps as described in steps 11 to 14;
18) end for
19) else
20) Insert (ti, to corresponding Queue) ;
21) wait for a free supported resource pi in the platform;
22) release(ti from corresponding Queue) & map onto freed pi;
23) insert(pi to mpg); update(resources by mpg);
24) wait and start from step 3 if new task ti is requested;
25) end for

requested task is entered into its corresponding queue (step
20) and waits until a supported resource is not freed (step
21). A resource becomes free when the task mapped on it
finishes its execution. After a resource becomes free,
platform resources are updated and a supported queued task
is released from the queue (step 22) and its mapping position
is found in order to map it. The same process (step 3 to 23)
is repeated for each unmapped task that is requested in order
to map all the tasks of each application.

B. Second Run-Time Mapping Algorithm (RTM2)
The first algorithm (RTM1) looks for only a free

supported resource and does not consider the load in
channels while mapping a task. Thus, RTM1 is not a
congestion aware mapping. We incorporate path load
computation approach in RTM1, to get a congestion aware
mapping algorithm (RTM2). For each mapping m, the path
load is computed from Equation (1), where rchl(i,j) and rchl(j,i)
are the rates in the individual channels, from the master task
position to the salve task position (task tried to map) and the
rates in the channels in opposite direction.

∑ ∑+=),(),(cos ijchljichlm rrt (1)

Algorithm RTM2 /*Second algorithm for Run-Time Mapping*/

In algorithm RTM1, path load computation is incorporated by
replacing the line (12) by:

• Calculate path load for node(s) (from equation 1)
• Select node pi with minimum path load

The rest of the lines remain same as in algorithm RTM1.

Here, path load for each supported node is calculated and
the node with minimum path load is selected to map the
requested task. By considering path load (congestion in
channels) while mapping a task the channel load is
distributed in the whole NoC and communication overhead
gets reduced.

Our analysis in time complexity shows that RTM1, RTM2
and heuristics NN, BN have time complexity of same level.
The mapping complexity of above four algorithms is O(C),
where C is the number of processing elements in the NoC.

VI. Experimental Setup and Results
Experiments are performed by ModelSim co-simulation

(System-C for applications and RTL-VHDL for the NoC).

A. Experimental Setup
The simulation platform used is an extended version of the

simulation platform used in [21]. Each application is
modeled as in Fig. 2, with an initial task and HW/SW tasks.
The task processing time is fixed. Each task transmits from
200 to 400 packets with size varying from 100 to 400 16-bit
flits.

The NoC is modeled in VHDL [22], in an 8×8 2D-mesh
topology (Fig. 3) and is responsible for data transfer between
the tasks. One node is used as manager processor (M), 44
nodes as SW resources and remaining 19 nodes contain large
enough reconfigurable area that can support three HW tasks
in parallel. For realistic scenarios, hardware tasks are limited
to three at one node position by considering the area
constraint of the reconfigurable tiles and software tasks are
limited to one by considering the memory space constraint
that is required to store the software. Processing nodes are
modeled by two SystemC-Cthreads, one for the M and the
other for the remaining Processing nodes.

The evaluated scenarios are: (i) applications having two
adjacent hardware tasks (Fig. 2(a)); and (ii) applications
having three adjacent hardware tasks (Fig. 2(b)). In both the
scenarios, 20 identical applications, each one with 10 tasks
and injection rate varying from 5 to 20% of available

bandwidth, are considered.
The number of applications executed at a time is limited

to 9 (each 10 tasks) by dividing the NoC into 9 clusters. If
less than 9 clusters are taken then resources are underutilized
and if more than 9 are taken then tasks need to wait in queue
for more time to get a free resource. The experiment is
performed by varying the number of clusters and best
performance is obtained by considering 9 clusters (Fig. 3).

B. Experimental Results
Algorithms are evaluated for average channel load, total

execution time and average packet latency. The proposed
RTM1 and RTM2 run on new platform, while the latest
approaches Nearest Neighbor (NN) and Best Neighbor (BN)
presented in [21] run on the older platform (OP) and on new
platform (NP) as well, denoted as NN(OP), NN(NP),
BN(OP) and BN(NP) respectively. As explained before, in
older platform each PE supports only one task and in new
platform hardware PEs are modeled to support more than
one task. The evaluated results for two simulated scenarios
are shown in Fig. 4. In scenario 1, two adjacent HW tasks
get mapped on one node and in scenario 2; three adjacent
HW tasks get mapped on one node as the applications in
scenario1 and scenario 2 contain two and three adjacent
hardware tasks respectively.

Average channel load reflects the NoC use. Our packing
strategy reduces the communication overhead by mapping
the tasks of an application in close proximity in a very
systematic manner. Additionally, in the new platform, the
adjacent hardware tasks get mapped on same node, resulting
in further reduction in the communication overhead. Thus
channel load is reduced as it depends directly on
communication overhead. The improvements of heuristics
NN, BN, RTM1 and RTM2 for two simulated scenarios are
shown in table 1. We get maximum improvement of 24.67%
in scenario 1 for RTM2 with respect to BN on older platform
(OP).

Total execution time is comprised of placement time,
configuration time, communication time, waiting time (when
no free resource in the platform) and computation time

Fig. 4. Graphs showing Average Channel Load, Total Execution Time and Average Packet Latency for two simulated scenarios (Scenario1
and Scenario 2) for different communication rate (% of available bandwidth)

Table 1: Summary of the improvements (%) on new platform (NP) for older heuristics (NN & BN) and our proposed heuristics (RTM1 &
RTM2) based on packing strategy. Improvements with respect to NN and BN on older platform (OP) for two simulated scenarios are shown.

Performance

Metric
Scenario 1 Scenario 2

 NN(NP) RTM1
(% improvement w.r.t. NN(OP))

 BN(NP) RTM2
(% improvement w.r.t. BN(OP))

 NN(NP) RTM1
(% improvement w.r.t. NN(OP))

 BN(NP) RTM2
(% improvement w.r.t. BN(OP))

Average Channel Load 14.70 18.59 17.64 24.67 3.38 9.69 6.04 10.57
Total Execution Time 3.24 3.41 3.24 3.44 9.38 9.96 8.71 9.30
Average Packet latency 2.64 4.23 1.76 3.60 3.58 4.80 2.12 3.45

amongst which communication time dominates. Our packing
strategy along with multi-tasking hardware resources in the
platform, successfully reduce communication overhead and
thus the communication time. The placement time is also
reduced (explained in section IV). Thus, total execution time
is reduced when compared to runtime mapping heuristics in
[21]. The improvements (%) are shown in table 1. An
improvement of 9.96% in scenario 2 for RTM1 with respect
to NN on older platform (OP) was found, while all the
heuristics have similar execution time, as shown in Fig. 4,
due to similar time complexity.

Average packet latency depends on the congestion in the
path and the distance between the source and destination PE
on which communicating tasks are mapped. It is also
successfully reduced as our packing strategy maps the tasks
of an application close to each other reducing the distance
between source and destination PE. Also, multi-tasking
resources minimize the congestion and the distance between
source and destination PE by mapping the adjacent HWs on
same node. The improvements are shown in table 1.

VII. Conclusion

We have proposed novel packing strategies for the
runtime mapping of applications onto an 8 × 8 multi-tasking
NoC-based heterogeneous MPSoC platform. It allows for
the hardware resources (Reconfigurable Logic) to support
multiple tasks on the same hardware element in order to
eliminate communication overhead while upholding
concurrent processing. First algorithm tries to map the tasks
of an application in close proximity, reducing the
communication overhead between the communicating tasks.
The second algorithm considers traffic in addition to the
proximity of tasks while mapping, resulting in more
uniformly distributed channel load. Our mapping algorithms
reduce the channel load, execution time and latency. The
improvements are clearly enunciated in the experiments and
results section. In addition, we have shown that the
state-of-the-art run-time mapping heuristics achieve
performance improvement when evaluated on the proposed
platform. Current MPSoC platform is limited to running one
task on each software element while the hardware element
can support multiple tasks. Work is underway to ensure that
each CPU (software resource) and hardware element of
MPSoC can operate as multitasking nodes so as to facilitate
further improvements to overall compute performance.

Acknowledgements

We thank Mr. Ewerson Carvalho (first author of the paper
[21]) for providing us the basic simulation environment and
helping us to expand it for the simulation of our ideas.

References

[1] http://view.eecs.berkeley.edu/wiki/Chip_Multi_Processor_Wa

tch, 2008.
[2] Tilera Corporation. TILE64TM Processor. Product Brief, 2007.
[3] Borkar, S. Thousand Core Chips-A Technology Perspective. In

Proc. of DAC, 2007

[4] Smit, L.; Smit, G.; Hurink, J.; Broersma, H.; Paulusma, D.;
Wolkotte, P. Run-time mapping of applications to a
heterogeneous reconfigurable tiled system on chip architecture.
In Proc. of FPL, 2004.

[5] Benini, L. and Micheli, G. Networks on Chips: A new SoC
paradigm. IEEE Computer, v.35(1), 2002.

[6] Nollet, V.; Marescaux, T.; Avasare, P.; Mignolet, J-Y.
Centralized Run-Time Resource Management in a
Network-on-Chip Containing Reconfigurable Hardware Tiles.
In Proc. of DATE, 2005.

[7] Vangal, S. ; Howard, J. ; Ruhl, G. ; Dighe, S. ; Wilson, H. ;
Tschanz, J. ; Finan, D. ; Iyer, P. ; Singh, A. ; Jacob, T. ; Jain,
S. ; Venkataraman, S. ; Hoskote, Y. ; Borkar, N. ; An 80-Tile
1.28TFLOPS Network-on-Chip in 65 nm CMOS. In Proc. of
ISSCC, 2007.

[8] Lin, L. ; Wang, C. ; Huang, P. ; Chou, C. ; Jou, J.
Communication-driven task binding for multiprocessor with
latency insensitive network-on-chip. ASPDAC, 2005.

[9] Hu, J.; Marculescu, R. Energy- and Performance-Aware
Mapping for Regular NoC Architectures. IEEE Transaction on
Computer-Aided Design of Integrated Circuits and Systems,
v.24(4), 2005.

[10] Murali, S.; Coenen, M.; Radulescu, A.; Goossens, K.; De
Micheli, G. A methodology for mapping multiple use-cases
onto networks-on-chip. In Proc. of DATE, 2006

[11] Ruggiero, M.; Guerri, A.; Bertozzi, D.; Poletti, F.; Milano, M.
Communication-aware allocation and scheduling framework
for stream-oriented multi-processor systems-onchip. In Proc.
of DATE, 2006.

[12] Wronski, F.; Brião, F.; Wagner, R. Evaluating Energy-aware
Task Allocation Strategies for MPSoCs. DIPES, 2006.

[13] Bertozzi, S.; Acquaviva, A.; Bertozzi, D.; Poggiali, A.
Supporting task migration in multiprocessor systems-on-chip; a
feasibility study. In Proc. of DATE, 2006.

[14] Nollet, V.; Avasare, P.; Eeckhaut, H.; Verkest, D.; Corporaal, H.
Run-time Management of a MPSoC Containing FPGA Fabric
Tiles. IEEE Transactions on Very Large Scale Integration
Systems, Vol. 16, No. 1, 2008.

[15] Theocharides, T.; Michael, M. K.; Polycarpou, M.; Dingankar,
A. Towards Embedded Runtime System Level Optimization
for MPSoCs: On-Chip Task Allocation. In Proc. of Great
Lakes Symposium on VLSI, 2009.

[16] Briao, E. W.; Barcelos, D.; Wagner, F. R. Dynamic Task
Allocation Strategies in MPSoC for Soft Real-time
Applications. In Proc. of DATE, 2008.

[17] Smit, G.; Kokkeler, A.; Wolkotte, P.; Burgwal, M. Multi-core
Architectures and Streaming Applications. SLIP, 2008.

[18] Holzenspies, P.; Hurink, J..; Kuper, J.; Smit G. Run-time
Spatial Mapping of Streaming Applications to a Heterogeneous
Multi-Processor System-on-Chip (MPSoC). DATE, 2008.

[19] Ngouangal, A.; Sassatelli, G.; Torres, L.; Gil, T.; Soares, A.;
Susin, A. A contextual resources use: a proof of concept
through the APACHES platform. In Proc. of DDECS, 2006.

[20] Chou, C-L.; Marculescu, R. User-Aware Dynamic Task
Allocation in Networks-on-Chip. In Proc. of DATE, 2008

[21] Carvalho, E.; Moraes, F. Congestion-aware task mapping in
heterogeneous MPSoCs. In Proc. of SoC, 2008

[22] Moraes, F.; Calazans, N.; Mello, A.; Moller, L.; Ost, L.
Hermes: an Infrastructure for Low Area Overhead
Packet-switching Networks on Chip. Integration, the VLSI
Journal, Vol 38-1, 2004

[23] Moller, L.; et al. A NoC-based Infrastructure to Enable
Dynamic Self Reconfigurable Systems. In Proc. of ReCoSoC,
2007.

http://view.eecs.berkeley.edu/wiki/Chip_Multi_Processor_Watch�
http://view.eecs.berkeley.edu/wiki/Chip_Multi_Processor_Watch�

	Amit Kumar Singh, Wu Jigang, Alok Prakash, Thambipillai Srikanthan, Douglas Maskell
	Centre for High Performance Embedded Systems, Nanyang Technological University, Singapore
	First Run-Time Mapping Algorithm (RTM1)
	Second Run-Time Mapping Algorithm (RTM2)
	Experimental Setup
	Experimental Results

