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Abstract - Real-time requirements of applications can limit the 
number of tasks executing in a Multiprocessor System-on-Chip 
(MPSoC) platform. This demand for efficient mapping 
algorithm that is capable of maximizing computation 
performance. This paper introduces a multi-tasking 
heterogeneous MPSoC platform along with two run-time 
mapping algorithms to maximize the performance by 
minimizing the communication overhead. The proposed 
algorithms have been shown to be capable of upholding the 
proximity of tasks in order to reduce the communication 
overhead by mapping the adjacent hardware tasks onto the 
same reconfigurable processing element whenever possible. The 
proposed approach has been shown to consistently alleviate 
Network-on-Chip (NoC) congestion bottlenecks, to maximize 
the performance. Based on our evaluations, we show that the 
new mapping algorithms are capable of reducing average 
channel load, total execution time and latency when compared 
to state-of the-art run-time mapping techniques reported in the 
literature. 
 
Keywords: Multiprocessor System-on-Chip (MPSoC) design, 
Hardware-Software Co-design, Heterogeneous Architectures, 
Network-on-Chip (NoC), Mapping Algorithms  
 

I Introduction 
The computation complexity of embedded applications 

and their performance requirements have increased 
significantly and these can no more be supported by a single 
general purpose processor, inevitably requiring high 
performance computing platforms. These platforms can be 
created by integrating several embedded processors on a 
single chip towards the development of a Multiprocessor 
System-on-Chip (MPSoC). MPSoC platforms [1] [2] are 
solutions to these complex applications to meet the ever 
rising performance requirements. 

The advancement in nanotechnology will enable to 
integrate thousands of processing elements in a single die by 
2015 [3]. In order to achieve high computation performance 
along with energy efficiency, the MPSoCs need to contain 
several type of processing elements, ranging from instruction 
set processors to application specific architectures [4].   

The PEs present in the MPSoC platform demands a 
communication infrastructure in order to have proper 
communication amongst different processing elements in the 
platform. Network-on-Chip (NoC) [5] is used as the 
communication infrastructure as they are highly scalable and 
support parallelism unlike buses and point-to-point 
communication. NoCs can integrate several type of 
processing elements like general purpose processors, 
specialized processing elements such as Digital Signal 
Processors, FPGA fabric tiles, dedicated IP-cores and 
specialized memories on a single chip towards the 
development of a MPSoC [4] [6]. 

Today’s complex applications need to be supported by 
MPSoC platforms containing different type of processing 
elements (PEs). Homogeneous MPSoCs [7] [8] composed of 
identical PEs can’t support many applications whereas, 
heterogeneous MPSoCs [4] [6], composed of different type of 
PEs support wide variety of applications. Heterogeneous 
MPSoCs are solutions for most of the applications to meet the 
performance constraints.   

Mapping applications onto MPSoC platform can be 
accomplished at either design-time or run-time. Design-time 
(Static) mapping techniques proposed in [9] [10] [11] find 
best placement of the tasks at design-time with a well known 
computation and communication behavior. They are not 
suitable for dynamic workloads where number of 
simultaneously running tasks may exceed the available 
platform resources. Run-time mapping techniques are 
required for dynamic workloads [12]. Task migration [13] is 
also used for run-time application mapping by inserting a new 
task into the system at run-time. At run-time, when a 
performance bottleneck is detected, the task is migrated from 
one PE to another, to distribute the workload more 
homogeneously, in order to improve the performance. 

This work presents a multitasking NoC-based 
heterogeneous MPSoC platform and two new run-time 
mapping heuristics based on our strategy called as packing 
strategy, for efficiently mapping applications onto the 
MPSoC platforms. Proposed mapping heuristics maps the 
tasks of an application in a systematic manner by clearly 
choosing a PE for a task and is described in detail in section 
IV. The performance of the mapping heuristics is evaluated 
for dynamic workloads. State-of-the-art run-time mapping 
heuristics presented in [21] consider single task supported 
processing elements (PEs) in the platform and do not perform 
well when applied to different scenarios. The heuristics 
developed by our packing strategy consider multitasking 
resources in the MPSoC platform and give better 
performance compared to state-of-the-art mapping heuristics 
in [21]. Our MPSoC platform consists of hardware/software 
resources to execute hardware/software tasks. Hardware 
resources (Reconfigurable Area) are considered large enough 
to support more than one task in parallel. On the other hand 
software resources are considered to support only one task so 
as to avoid any memory bottlenecks. Memory space is 
required to store the software’s (software tasks). At run-time 
adjacent (communicating) hardware tasks of an application 
get mapped on same hardware node, reducing the 
communication overhead between the tasks. Additionally, 
our strategy maps the communicating tasks close to each 
other so as to further minimize the communication overhead. 
We have evaluated our mapping heuristics and 
state-of-the-art run-time mapping heuristics presented in [21] 



for our target MPSoC architecture and performance matrices 
such as average channel load, total execution time and latency 
are compared in order to show the performance 
improvements.    

The rest of the paper is organized as follows: Section II 
presents the related work. Section III describes the MPSoC 
architecture. In Section IV, we present our packing strategy. 
Section V describes the mapping algorithms. Experimental 
setup and the results are presented in Section VI with Section 
VII concluding the paper along with future directions. 

 
II. Related Works 

The academia and companies have developed several 
MPSoCs and many are on the way to be released [1]. These 
MPSoCs are customized for different target market like 
general purpose computing, scientific computing and 
embedded computing according to their computation 
requirement.  

Most of the work in literature present static mapping 
techniques [9] [10] [11] in order to map applications onto the 
MPSoC platforms but these are not adequate for an adaptive 
system that changes its behavior over time. These mapping 
techniques consider fix computation and communication 
behavior of a task to find its best possible placement. 
Run-time mapping techniques are required for adaptive 
systems that contain dynamic workload.  

Nollet et al. [14] present a run-time task assignment 
heuristic that performs fast and efficient task assignment in an 
MPSoC. The MPSoC platform contains FPGA fabric tiles 
along with other processing elements. The FPGA fabric tiles 
facilitate configuration hierarchy that improves the task 
assignment success rate and quality. Theocharides et al. [15] 
demonstrate a run-time, system-level bidding-based task 
allocation strategy for generic MPSoC architectures. The 
allocation strategy gives significant performance 
improvements when compared to a round robin allocation, in 
popular MPSoC applications. Briao et al. [16] present 
dynamic task allocation strategies in MPSoCs based on 
bin-packing algorithms with task migration capabilities for 
running soft real-time applications. Two types of algorithms 
are combined to get better allocation results. In order to save 
energy, the system turns off idle processors and applies 
Dynamic Voltage Scaling to processors with slack. Smit et al. 
[17] present multi-core architectures and run-time mapping 
of streaming applications onto these architectures. In [4], 
authors demonstrate a run-time task assignment algorithm to 
map a task-graph onto an MPSoC platform. The algorithm 
maps a task before all other task that needs a scarce resource, 
by taking availability of resources into account. Holzenspies 
et al. [18] describe a run-time spatial mapping technique 
consisting of four steps to map the streaming applications 
onto a heterogeneous MPSoC. The mapping solutions found 
are verifiable for feasibility. The algorithm is implemented 
onto an ARM926 processor running at 100 MHz and it takes 
less than 4 ms to run the HIPERLAN/2 example. Ngouangal 
et al. [19] describe a mapping technique based on the 
attraction forces between communicating tasks that tries to 
place them close to each other. While mapping tasks at 

run-time, the performance requirements, the number of 
available NPUs (Network Processing Units) and their 
respective positions are taken into account. Chou et al. [20] 
propose a run-time mapping strategy for allocating the 
application tasks to platform resources in homogeneous 
MPSoCs. The user behavior information is incorporated in 
the resource allocation process; that allows system to better 
respond to real-time changes and adapt dynamically to user 
needs. By considering user behavior, 60% communication 
energy is saved compared to an arbitrary task allocation 
strategy. Carvalho et al. [21] present heuristics for run-time 
mapping of tasks in NoC-based heterogeneous MPSoCs 
where tasks are mapped on the fly, according to the 
communication requests and the load in the NoC links.  

 
III. Target MPSoC Architecture 

Our MPSoC platform contains a set of different PEs which 
interacts via a communication network [22] as shown in Fig. 
1. PEs can support either a hardware or software tasks. 
Software tasks execute in instruction set processor (ISP) and 
hardware tasks execute in reconfigurable logic blocks (RA) or 
in dedicated IP-cores. The RAs are considered large enough 
to support more than one hardware tasks in parallel. The ISPs 
are considered to support a single software task to avoid the 
memory constraint issue. For inter-task communication, 
message passing protocol is used by the communication 
network as described in [14]. XY routing algorithm is used to 
transmit and receive the messages. In XY routing, first, the 
packet is transferred in X-direction then in Y-direction for 
transferring packets from one processing node to another 
processing node. 

In the MPSoC platform, one of the ISP is used as the 
Manager Processor (M) that is responsible for task mapping, 
task scheduling, resource control and configuration control. 
The configuration overhead results are used to simulate the 
configuration control process [23]. 
   The initial tasks (starting tasks) for each application are 
started by M and new unmapped communicating tasks are 
loaded into the MPSoC at run-time from the task memory 
when a communication to them is required.  

Task mapping involves task binding and task placement. In 
task binding, a decision is made whether the task will be 
mapped on an ISP (software task) or on a RA/IP (hardware 
task). As there are many ISPs and RAs in the platform, so in 
task placement real position for the task to be mapped is 
found. For resource control, the resources status is updated at  

 

 
 

Fig. 1. Target MPSoC Architecture 



run-time to provide the M with an accurate information about 
the resource occupancy as the mapping decision is taken 
based on the PEs and NoC use. Task scheduling is 
implemented by the queue strategy and there are three 
queuesfor hardware, software and initial tasks. A task enters 
into its corresponding queue if there is no free resource in the 
platform and waits until a resource of same type is not free. 

 
IV. Proposed Packing Strategy 

The proposed packing strategy for mapping the 
applications onto the MPSoC architectures is described in this 
section. The application, MPSoC architecture and mapping 
are defined subsequently in order to explain the strategy.  

Application is modeled by acyclic directed graph TG (Task 
Graph) = (T, E), where T is set of tasks in the application and 
E is the set of edges in the application as in Fig. 2 (a) and (b) 
similar to [21]. Each application has one initial (starting) task 
and various hardware/software (HW/SW) tasks. A 
connection (edge) between two tasks defines master-slave 
pair as in Fig 2 (c), i.e., a connection contains master and 
salve tasks. The initial task has no master. Each edge in E 
contains four parameters (Vms, Rms, Vsm, Rsm) as in Fig 2 (c), 
where Vms and Rms represent the volume (V) and rate(R) of 
data to send from master to salve (ms) and Vsm and Rsm 
represent the volume (V) and rate(R) of data to send from 
slave to master (sm).  

MPSoC architecture is a directed graph AG (Architecture 
Graph) = (P, L), where P is the set of tiles pi and li,j є L 
presents the physical link between two tiles pi and pj. 

Mapping of applications’ tasks onto the MPSoC 
architecture is represented as mpg: ti (∈T) |→ pi (∈ P) 

State-of-the-art run-time mapping heuristics Nearest 
Neighbor (NN) and Best Neighbor (BN) in [21] tries to map a 
slave task near the node at which master task is mapped, i.e., 
at a neighboring node. These heuristics do not consider the 
node’s position while finding placement of the slave task. 
This results in higher communication overhead as the slave 
tasks from different applications gets mapped to any of the 
neighbor node of their masters. In our packing strategy, we 
systematically chose a neighboring node for the task mapping 
that reduces the communication overhead. Also, by 
incorporating multi-tasking hardware resources in the 
MPSoC platform, the communication overhead is further 
reduced as adjacent communicating hardware tasks gets 
mapped onto the same processing node. 

In our packing strategy, the communicating tasks of an 
application are mapped close to each other in a systematic 
manner so that they need not to communicate from distance 
apart in order to avoid the communication overhead. Here, 
the demonstration is done with nine applications at a time to 
be mapped onto the MPSoC platform. To map applications, 
firstly, clusters are found for each application and initial tasks 
are placed at the centre of the clusters (as shown in Fig. 3). All 
the tasks belonging to an application are tried to map within a 
particular cluster in which its initial task is mapped. The 
cluster boundaries are virtual so more than one application 
can share some parts of a given region. In our approach, these  
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Fig. 2. Applications modeling (a), (b) and Master-Slave pair (c) 
 
clusters are chosen in a distributed manner so that 
communicating tasks for each application (here 9 
applications) will be mapped in close proximity within a 
particular cluster. Thus, there will be minimum interference 
between two applications resulting in reduced channel 
congestion. If initial tasks are not mapped in a distributed 
manner, i.e., are mapped randomly then they might get placed 
very close to each other. Now, when rest of the tasks  of each 
application are mapped, the applications need to share the 
same NoC region that will result in longer waiting time for a 
resource to become free for task mapping, and increased 
channel congestion.    

For each application (here 9 applications), after the initial 
tasks get mapped and start their execution, new 
communicating tasks are mapped according to the 
communication request. To map a requested task, firstly, the 
task is tried to be mapped at the same processing node making 
the request as hardware resources support more than one task. 
A task is supported by a processing element (PE) if the type 
of PE is same as the type of the task and there is a free 
resource at the PE location. If task is not supported by the 
node making the request, then it is tried to be mapped at hop 
distance of one. If task is not supported at hop distance one 
then it is tried to be mapped at hop distance of two and so on. 
The attempt goes up to the NoC limit. At each hop distance, 
first, left or down side PE around the node making the request 
(master task position) is selected to map the task, so that the 
PEs on the top-right edge of the cluster can be used by tasks 
of other applications that are also getting mapped in the 
similar manner. Thus, resource utilization is increased. This 
strategy is applied to each application to be mapped and most 
of the applications get the free resources from other 
application’s top-right edge of the cluster.  If neither left nor 
down side processing element is able to execute the task only, 
then the task is tried to be mapped onto the top or right side 
PE.  

This strategy maps the communicating tasks of each 
application in close proximity, thus reducing the 
communication overhead. Additionally, by incorporating 
multi-tasking hardware resources, adjacent communicating 
hardware tasks are mapped onto the same processing node, 
resulting in further reduction of communication overhead and 
more compact mapping. Average channel load is reduced as 
it directly depends on the congestion in the channel and 
communication overhead. Total execution time mainly 
depends on computation time and communication time. 
Communication time is reduced by reducing the 
communication overhead. The search space to find a 
supported node for requested task is reduced by searching in a 
systematic manner as explained above, resulting in reduced  
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Fig. 3. Initial tasks placement for mapping applications 
 
placement time. Thus, total execution time is also reduced. 
Average packet latency depends on the distance between 
source and destination PE and the congestion in the commu- 
nication path. Distance between source and destination PE is 
reduced by mapping the communicating tasks close to each 
other and channel congestion is also reduced (explained 
above), thus average packet latency is reduced. 

 
V. Runtime Mapping Algorithms 

A. First Run-Time Mapping Algorithm (RTM1) 
This algorithm is based on the packing strategy (discussed 

in section III) along with the search space (circular search 
space) of Nearest Neighbor (NN) heuristic in [21]. 

To map multiple applications onto the MPSoC platform, 
Algorithm RTM1 is followed by each application that is 
getting mapped. First, initial tasks for each application are 
mapped after finding a suitable cluster (step 1 & 2) in a 
distributed manner as shown in Fig. 3. Clusters are chosen in 
distributed manner to reduce the channel congestion and 
waiting time to map a task as discussed in section IV. The M 
knows only the initial tasks. When initial tasks start their 
execution, communication requests are sent to the M to map 
the slave tasks at run-time. 

The run-time requested task (step 3) is mapped for sure if 
there is any free supported PE (step 4) in the NoC. The task 
is first tried to map at the same PE (step 5 & 6) on which its 
master is mapped. If the same PE can’t support the requested 
task then it is tried to map at hop distance of one. If there is 
no supported resource at hop distance one then it is tried to 
map at hop distance of two and so on. The search space goes 
up to the NoC limit (step 9). At each hop distance first left 
and down side PE(s) (step 10) are selected to map the task 
and if none of them support the task then only the task is 
tried to be mapped on right or upside PE(s) (step 16). 

After mapping the task on a PE, the resources are updated 
and the M waits for the next requested task (step 13 & 14). If 
there is no free supported resource in the platform (step 19) i. 
e. number of tasks exceeds the platform resources then the  

Algorithm RTM1 /* First algorithm for Run-Time Mapping*/  
Input: TG(T,E), AG(P,V) /* task ti ∈ T ; processing element pi ∈P */ 
Output: mpg (mapping TG(T,E)  AG(P,V) ) 
1) Find a suitable cluster for the application (from Fig. 3); 
2) Map the initial task (INI∈ T) at the centre of the cluster; 
3) for each unmapped task ti that is requested do 
4)   if (there is free supported resource in the platform )  
5)     if (resource free at master task position) 
6)         Map the task and update mpg & resources; 
7)         wait and go back to step 4 if new task is requested; 
8)     else  
9)       for hop_distance = 1 to NoC limit do 
10)         Select left and down side node(s) for mapping; 
11)         if (node(s) support the task) 
12)           Select first free supported node pi є P to map ti; 
13)                insert(pi to mpg); update(resources by mpg); 
14)           wait and go back to step 4 if new task is requested; 
15)         else 
16)           Select right and up side node(s) for mapping; 
17)           Do similar steps as described in steps 11 to 14; 
18)      end for   
19)   else 
20)     Insert (ti, to corresponding Queue) ; 
21)     wait for a free supported resource pi in the platform;  
22)     release(ti from corresponding Queue) & map onto freed pi; 
23)     insert(pi to mpg); update(resources by mpg); 
24)     wait and start from step 3 if new task ti is requested;  
25) end for 
 
requested task is entered into its corresponding queue (step 
20) and waits until a supported resource is not freed (step 
21). A resource becomes free when the task mapped on it 
finishes its execution. After a resource becomes free, 
platform resources are updated and a supported queued task 
is released from the queue (step 22) and its mapping position 
is found in order to map it. The same process (step 3 to 23) 
is repeated for each unmapped task that is requested in order 
to map all the tasks of each application.  

B. Second Run-Time Mapping Algorithm (RTM2) 
The first algorithm (RTM1) looks for only a free 

supported resource and does not consider the load in 
channels while mapping a task. Thus, RTM1 is not a 
congestion aware mapping. We incorporate path load 
computation approach in RTM1, to get a congestion aware 
mapping algorithm (RTM2). For each mapping m, the path 
load is computed from Equation (1), where rchl(i,j) and rchl(j,i) 
are the rates in the individual channels, from the master task 
position to the salve task position (task tried to map) and the 
rates in the channels in opposite direction. 
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Algorithm RTM2 /*Second algorithm for Run-Time Mapping*/ 

In algorithm RTM1, path load computation is incorporated by 
replacing the line (12) by: 

• Calculate path load for node(s) (from equation 1) 
• Select node pi with minimum path load  

The rest of the lines remain same as in algorithm RTM1. 



Here, path load for each supported node is calculated and 
the node with minimum path load is selected to map the 
requested task. By considering path load (congestion in 
channels) while mapping a task the channel load is 
distributed in the whole NoC and communication overhead 
gets reduced. 

Our analysis in time complexity shows that RTM1, RTM2 
and heuristics NN, BN have time complexity of same level. 
The mapping complexity of above four algorithms is O(C), 
where C is the number of processing elements in the NoC. 
 

VI. Experimental Setup and Results 
Experiments are performed by ModelSim co-simulation 

(System-C for applications and RTL-VHDL for the NoC). 

A. Experimental Setup 
The simulation platform used is an extended version of the 

simulation platform used in [21]. Each application is 
modeled as in Fig. 2, with an initial task and HW/SW tasks. 
The task processing time is fixed. Each task transmits from 
200 to 400 packets with size varying from 100 to 400 16-bit 
flits. 

The NoC is modeled in VHDL [22], in an 8×8 2D-mesh 
topology (Fig. 3) and is responsible for data transfer between 
the tasks. One node is used as manager processor (M), 44 
nodes as SW resources and remaining 19 nodes contain large 
enough reconfigurable area that can support three HW tasks 
in parallel. For realistic scenarios, hardware tasks are limited 
to three at one node position by considering the area 
constraint of the reconfigurable tiles and software tasks are 
limited to one by considering the memory space constraint 
that is required to store the software. Processing nodes are 
modeled by two SystemC-Cthreads, one for the M and the 
other for the remaining Processing nodes. 

The evaluated scenarios are: (i) applications having two 
adjacent hardware tasks (Fig. 2(a)); and (ii) applications 
having three adjacent hardware tasks (Fig. 2(b)). In both the 
scenarios, 20 identical applications, each one with 10 tasks 
and injection rate varying from 5 to 20% of available 

bandwidth, are considered. 
The number of applications executed at a time is limited 

to 9 (each 10 tasks) by dividing the NoC into 9 clusters. If 
less than 9 clusters are taken then resources are underutilized 
and if more than 9 are taken then tasks need to wait in queue 
for more time to get a free resource. The experiment is 
performed by varying the number of clusters and best 
performance is obtained by considering 9 clusters (Fig. 3). 

B. Experimental Results 
Algorithms are evaluated for average channel load, total 

execution time and average packet latency. The proposed 
RTM1 and RTM2 run on new platform, while the latest 
approaches Nearest Neighbor (NN) and Best Neighbor (BN) 
presented in [21] run on the older platform (OP) and on new 
platform (NP) as well, denoted as NN(OP), NN(NP), 
BN(OP) and BN(NP) respectively. As explained before, in 
older platform each PE supports only one task and in new 
platform hardware PEs are modeled to support more than 
one task. The evaluated results for two simulated scenarios 
are shown in Fig. 4. In scenario 1, two adjacent HW tasks 
get mapped on one node and in scenario 2; three adjacent 
HW tasks get mapped on one node as the applications in 
scenario1 and scenario 2 contain two and three adjacent 
hardware tasks respectively.  

Average channel load reflects the NoC use. Our packing 
strategy reduces the communication overhead by mapping 
the tasks of an application in close proximity in a very 
systematic manner. Additionally, in the new platform, the 
adjacent hardware tasks get mapped on same node, resulting 
in further reduction in the communication overhead. Thus 
channel load is reduced as it depends directly on 
communication overhead. The improvements of heuristics 
NN, BN, RTM1 and RTM2 for two simulated scenarios are 
shown in table 1. We get maximum improvement of 24.67% 
in scenario 1 for RTM2 with respect to BN on older platform 
(OP).  

Total execution time is comprised of placement time, 
configuration time, communication time, waiting time (when 
no free resource in the platform) and computation time 

 

    
 
Fig. 4. Graphs showing Average Channel Load, Total Execution Time and Average Packet Latency for two simulated scenarios (Scenario1 
and Scenario 2) for different communication rate (% of available bandwidth) 
 

Table 1: Summary of the improvements (%) on new platform (NP) for older heuristics (NN & BN) and our proposed heuristics (RTM1 & 
RTM2) based on packing strategy. Improvements with respect to NN and BN on older platform (OP) for two simulated scenarios are shown. 

 
Performance 

Metric 
Scenario 1 Scenario 2 

   NN(NP)   RTM1 
(% improvement w.r.t. NN(OP)) 

   BN(NP)    RTM2 
(% improvement w.r.t. BN(OP)) 

 NN(NP)     RTM1 
(% improvement w.r.t. NN(OP)) 

 BN(NP)      RTM2 
(% improvement w.r.t. BN(OP)) 

Average Channel Load   14.70      18.59           17.64      24.67    3.38        9.69    6.04        10.57 
Total Execution Time    3.24       3.41     3.24       3.44   9.38        9.96   8.71         9.30 
Average Packet latency    2.64       4.23     1.76       3.60   3.58        4.80   2.12         3.45 

 



amongst which communication time dominates. Our packing 
strategy along with multi-tasking hardware resources in the 
platform, successfully reduce communication overhead and 
thus the communication time. The placement time is also 
reduced (explained in section IV). Thus, total execution time 
is reduced when compared to runtime mapping heuristics in 
[21]. The improvements (%) are shown in table 1. An 
improvement of 9.96% in scenario 2 for RTM1 with respect 
to NN on older platform (OP) was found, while all the 
heuristics have similar execution time, as shown in Fig. 4, 
due to similar time complexity.   

Average packet latency depends on the congestion in the 
path and the distance between the source and destination PE 
on which communicating tasks are mapped. It is also 
successfully reduced as our packing strategy maps the tasks 
of an application close to each other reducing the distance 
between source and destination PE. Also, multi-tasking 
resources minimize the congestion and the distance between 
source and destination PE by mapping the adjacent HWs on 
same node. The improvements are shown in table 1. 

 
VII. Conclusion 

We have proposed novel packing strategies for the 
runtime mapping of applications onto an 8 × 8 multi-tasking 
NoC-based heterogeneous MPSoC platform. It allows for 
the hardware resources (Reconfigurable Logic) to support 
multiple tasks on the same hardware element in order to 
eliminate communication overhead while upholding 
concurrent processing. First algorithm tries to map the tasks 
of an application in close proximity, reducing the 
communication overhead between the communicating tasks. 
The second algorithm considers traffic in addition to the 
proximity of tasks while mapping, resulting in more 
uniformly distributed channel load. Our mapping algorithms 
reduce the channel load, execution time and latency. The 
improvements are clearly enunciated in the experiments and 
results section. In addition, we have shown that the 
state-of-the-art run-time mapping heuristics achieve 
performance improvement when evaluated on the proposed 
platform. Current MPSoC platform is limited to running one 
task on each software element while the hardware element 
can support multiple tasks. Work is underway to ensure that 
each CPU (software resource) and hardware element of 
MPSoC can operate as multitasking nodes so as to facilitate 
further improvements to overall compute performance.  
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