
 

  

Abstract 
 The rapid increase in the complexity of real-life applications 
has led to the perpetual demand of refined architectural 
designs. Multiprocessor systems-on-chip (MPSoC) emerges as 
one of the possible solution for satiating such enormous 
computational needs. These MPSoCs are employed with 
Network-On-Chip (NoC) interconnect for power efficient and 
scalable inter-communication required between processors. 
Mapping parallelized tasks of applications onto these MPSoCs 
is the next gigantic problem, which can be done either at 
design-time or at run-time. However, design-time strategies 
may sometimes provide a more optimal mapping but they are 
restricted to predefined set of applications and seem incapable 
of run-time resource management. On the contrary, run-time 
mapping techniques overcome this limitation by determining 
the state of the platform and incorporating resource 
management before mapping. This paper describes a heuristic 
for run-time mapping of parallelized tasks of an application 
considering efficient computation, communication and 
resource utilization as the main parameters for optimization.  
 
Keywords: Heterogeneous architectures, Network-on-Chip (NoC), 
MPSoC design, mapping heuristics. 
 
1. Introduction 
 

The era of employing single general purpose processors to 
handle entire computational complexity of an application has 
come to an end. Earlier, it was feasible for applications having 
smaller scope and less complexity but presently, due to huge 
advancement in every sphere of technology, the complexity of 
applications has surpassed the capabilities of single processor. 
However, advancement in Nanotechnology paved a way to 
fulfill this overwhelming need for computational complexity by 
employing concurrently working multiple processors on a 
single chip referred as MPSoC [1]. MPSoCs further arise need 
for efficient inter-communication between various processing 
elements (PEs), thereby, making previous communication 
architectures i.e. shared buses, dedicated point-to-point 
connections inadequate. However, Network-on-Chip (NoC) 
architecture is presently the most promising candidate that 
interconnects these PEs through a configurable mesh of on-chip 
connections in a power efficient and highly scalable manner 
[2]. The data communication among interconnected PEs is 
done through multiple point-to-point data links controlled by 
switches. MPSoCs may either consist of identical PEs referred 
as homogeneous or combination of different types of PEs 
referred as heterogeneous. NoCs can be used to realize these 
MPSoCs by interconnecting several types of PEs i.e. General 

Purpose Processors (GPPs), Digital Signal Processors (DSPs), 
intellectual property cores (IPs), FPGA fabric tiles, Instruction 
Set Processors (ISPs) and specialized memories on a single 
chip in order to accomplish high computation performance and 
energy efficiency [4]. The reported literature provides several 
MPSoC architecture models [18, 19]. In [18], eight 
floating-point units and one manager processor have been 
proposed for heterogeneous MPSoC by combined efforts of 
IBM, Toshiba and Sony. 

Due to high complexity, multimedia and networking 
applications become the target applications for MPSoCs. These 
applications can be represented as a conglomeration of several 
computational or communication intensive tasks that are 
executing in parallel. Mapping these tasks onto MPSoCs in 
order to obtain high performance and enhanced resource 
utilization poses to be the next gigantic problem. Mapping can 
be carried out either at design-time or at run-time. Design-time 
mapping techniques are more dominant in the reported 
literature [3, 19, 20], where the decision for placement of tasks 
onto the platform is pre-calculated. Since, the mapping is 
performed without considering the current state of the platform, 
therefore, these techniques are not suited for dynamic 
workloads.  Run-time mapping techniques overcome this 
limitation of adapting to dynamic workloads and run-time 
resource management by determining the state of the platform 
before mapping. The primary interest for most of the existing 
run-time mapping techniques is to reduce communication 
overhead and increase energy efficiency. In [16], authors 
propose a communication aware run-time heuristic which maps 
the tasks on the fly depending upon the communication 
requests and the load in the NoC links. Singh et al. [6, 7] 
propose packing strategies that try to map the communicating 
tasks of an application in close vicinity to each other in order to 
decrease the communication latencies. These mapping 
heuristics follow a localized approach and does not consider 
computation load variance as a parameter for optimization 
while mapping. In this paper, we present a run-time mapping 
heuristic for heterogeneous MPSoCs, where each PE can 
support multiple tasks. The MPSoC platform is similar to that 
described in [7], which consists of two types of PEs (Instruction 
Set Processors and Reconfigurable Areas). The proposed 
heuristic shows significant performance improvements, higher 
energy and resource utilization along with lower computation 
load variance over state-of-the-art heuristics reported in 
literature. 

The rest of the paper is organized as follows. Section 2 
provides an overview of related work. Section 3 presents the 
problem definition and target architecture. Section 4 describes 
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results are presented in Section 5. In Section 6, we conclude the 
paper and provide future directions. 

 
2. Related Work 
 

Task mapping is one of the crucial activity for obtaining high 
performance, low energy consumption and efficient resource 
utilization. Numerous design-time techniques have been 
reported in literature, for example, [8], [9], [10] but all of these 
cannot be applied for run-time mapping of multiple tasks on 
MPSoC platform. 

Mehran et al. [5] present a run-time heuristic in which the 
communicating tasks are mapped close to each other by finding 
placement in a spiral path. This Dynamic Spiral Mapping 
(DSM) employs PEs arranged in 2-D mesh topology for 
run-time mapping of application tasks. 

Briao et al. [11] present a combination of bin-packing 
algorithms along with linear clustering algorithms for dynamic 
task allocation of soft real-time applications. The energy 
efficiency is improved by providing a low-power mode for idle 
processors and reducing the operating voltage when 
processor’s maximum performance is not required. 

Schranzhofer et al. [12] presents a multiple-step strategy that 
employs polynomial-time algorithm which involves finding 
initial solutions followed by power constrained task remapping. 
At first, linear programming relaxation generates initial 
solutions for the power-aware scenario, and then the quality of 
the solution is improved by task remapping. 

Carvalho et al. [13], presents a detailed performance analysis 
of five run-time mapping heuristics, First Free (FF), Nearest 
Neighbor (NN), Minimum Maximum Channel Load (MMC), 
Minimum Average Channel Load (MAC) and Path load (PL). 

Nollet et al. [14] present a run-time task assignment heuristic 
for mapping various tasks on an MPSoC containing FPGA 
fabric tiles. The FPGA fabric tile enables the support for 
configuration hierarchy that improves the quality and success 
rate of task assignment. Spatial task assignment leads to 
efficient usage of platform resource. 

Holzenspies et al. [15] propose a run-time heuristic involving 
four different steps that leads to optimized spatial mapping of 
inherently parallel streaming applications on MPSoC. The 
strategy involves different steps including design-time 
modeling, run-time feedback analysis and spatial mapping. 

Singh et al. [7] describe a run-time packing heuristic that 
tries to reduce the communication overhead between the 
connected tasks by mapping them on a single PE. If a single PE 
cannot accommodate all connected tasks, then the heuristic 
attempts to map these tasks onto PEs at minimum hop distance 
with each other. Increasing energy efficiency and reducing the 
NoC average channel load forms its basis. However, the 
heuristic does not fully utilize the capabilities of reconfigurable 
areas (RAs) present in the MPSoC by sparsely executing the 
computation intensive tasks on them. Additionally, the 
heuristic results in high computation load variance among 
different PEs after application mapping. 

 

3. Problem Definition 
A task graph representation of an application as described in 

[15] has been adapted. An application has been broken down 
into cluster of communicating individual units, known as tasks, 
which execute concurrently to generate output. A directed 
graph ATG = (T, E) represents the task graph, where T is a set of 
application tasks and E is the set of all edges in the application, 
connecting the tasks and representing their communication. 
Every task is considered to be executable on both software and 
hardware resources, having different execution time for each 
resource. The difference in execution times determines the 
suitability of a task to be executed on hardware or software 
resource, i.e., a hardware or software task. A task ti � T is 
represented as (tid, tswcomp, thwcomp), where tid is the task identifier, 
tswcomp is the task software computation load in cycles (when the 
task is executed on general purpose processor) and thwcomp is the 
task hardware computation load in cycles (when the task is 
executed on reconfigurable area). An edge ei ��� represents the 
connection between two communicating tasks and its weight is 
denoted as tcomm as shown in Figure 1, which represents the data 
volume for a single token to be sent between connected tasks in 
terms of number of cycles taken for transfer, when full channel 
bandwidth is available. The communicating tasks forms a 
master-slave pair, where the master task in the task set T 
executes till last token is sent to its slave task. A slave task will 
start its execution once it has received a complete token from its 
master task. For example, t1 is master and t2  & t3 are slaves in 
Figure 1.  

 
Figure 1: Execution Trace of Application Graph A 

A directed graph AG = (P, C) represents NoC-based 
heterogeneous MPSoC architecture, where P is the set of PEs 
identified by its identifier pid and ci,j � C represents the physical 
communication channels for interconnecting the PEs. A tile pi 
� P consists of a network interface, a heterogeneous processing 
element, local memory and a cache.   

The proposed MPSoC architecture is an extension of the 
architecture used in Carvalho [16]. In [16], each processing 
node is capable of supporting only a single task. In the proposed 
architecture, multiple tasks can be supported by each 
processing node that has fixed area & memory. Software tasks 
execute in instruction set processors (ISPs) and hardware tasks 
execute in reconfigurable areas (RAs). Inclusion of RAs in the 
platform provides the hardware programmability, similar to 
that of general purpose processors. The platform supports 
varying channel bandwidth but for evaluation purpose, 
communicating tasks have been allocated full available 
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Figure 2: Our 6×6 NoC based MPSoC Architecture. 

channel bandwidth. The PEs are connected in 6×6 mesh 
topology by a NoC as shown in Figure 2, where GPP represents 
general purpose processor, RA represents reconfigurable area 
and R represents router. However, we can consider mesh of 
different sizes. One of the PE is used as Manager Processor that 
performs task mapping, resource control, configuration and 
management. Task mapping is represented by function mpg: ti 
� T  pi � P, that maps a task of the application to a PE in the 
MPSoC architecture. 
 
 4. Proposed Mapping Strategy 

The proposed mapping strategy first performs the processing 
of the given application followed by mapping on the MPSoC 
platform. The processing algorithm facilitates the execution of 
computation intensive tasks on RAs, thereby, improving 
performance, energy efficiency and reduction in 
communication overhead. It emphasizes on the excessive 
utilization of RAs to their maximum capability. The proposed 
mapping algorithm maps the processed application on the 
MPSoC platform. 

 
4.1 Algorithm 
The proposed algorithm takes application task graph as an input 
and tries to efficiently optimize the graph before actual 
mapping is done on the MPSoC. The technique requires that 
every task can be executed on every PE (hardware or software) 
available in the MPSoC. Initially, the algorithm assumes that all 
the tasks of an application should be executed on hardware 
resources, i.e., RAs and hence it starts optimizing the graph 
considering hardware computation load of each task. The 
scheme starts by finding the most communication intensive 
edges in the graph and then tries to combine the associated tasks 
on the same PE. The merge is performed only when the area 
restriction of the corresponding PE is satisfied, i.e., the PE must 
have enough area to configure the logic for accommodating 
both tasks. This merging of tasks facilitates in the reduction of 
communication overhead which arises due to the transfer of 
data among connected tasks. This data transfer over the NoC 

channel not only enhances the execution time but also increases 
the energy consumption. Hence, removing communication 
bottlenecks leads to improved performance. The effectiveness 
of the algorithm can be observed by analyzing the execution 
trace of the application graph as shown in Figure 1, where ri 
represents the trace for hardware computation time of each task  

Algorithm 1 : Processing 

Input: ATG(T,E) 
Output: Optimized ATG(T,E)  
(1) do{ 
(2)      Find task ti ��T having maximum hardware computation  

     load (max_phw_load) from ATG (T,E). 
(3)       Find edge ei � E having maximum communication load  

     (max_cload) from ATG (T,E). 
(4)      if (max_phw_load < max_cload) then 
(5)              Find hardware computation and communication  

          load of connecting tasks tp  & tq of the edge ei � E ,  
    i.e., phw_load(tp) and phw_load(tq) 

(6)               if (phw_load(tp) + phw_load(tq)  <= max_cload)  then  
(7)                   Merge tp and tq to a single node if their area 

         requirements are satisfied on a single  
         PE location and update ATG(T,E). 

(8)               else 
(9)                   break; //goto next phase of optimization. 
(10)            end if 
(11)       end if 
(12) while(max_cload>max_phw_load)  
(13) Find ti and tj with Min (phw_load(ti) + phw_load(tj)) < max_pload) 

from updated ATG(T,E). 
(14)   if (ti & tj are communicating tasks) then  
(15) Merge ti and tj to a single node if the area requirements 

are satisfied on a single PE and update ATG(T,E). 
(16) else  
(17)  Find ei & ej � E having minimum communication load. 
(18)  if (cload(ei) + cload(ej)  < max_phw_load) then 
(19) Merge ti and tj to a single node if their area 

requirements are satisfied on a single PE and update 
ATG(T,E) 

(20)    else goto (13) to find next minimum combined load. 
(21) repeat steps (13) to (18) till condition at (13) is satisfied. 
(22) Find task ti ��T in the updated graph. 
(23) if(sum of psw_load of individual merged node) <  

max_phw_load ) 
(24)       Update ATG(T,E) with ti as a software resource having 

   computation load = sum of psw_load of individual 
          merged node. 

(25) repeat steps (22) to (24) till condition at (23) is satisfied 
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Figure 3: Optimized Application obtained after processing 

ti � Ti and wi represents the trace for communication time of 
each edge ei � Ei. The figure clearly delineates the inherent 
parallelism that can be tapped in order to gain considerable 
performance improvements. For example, if tasks t1 and t3 are 
merged on a single PE, then this will remove the bottleneck e2, 
thereby shrinking the execution trace and leading to lower 
overall execution time. The resulted optimized application 
graph consists of hardware computation bottleneck as the graph 
has been obtained considering the hardware computation time 
of each task. The limited number of hardware resources on the 
platform restricts the possibility of mapping this optimized 
graph onto MPSoC. Therefore, depending upon the hardware 
computation bottleneck, we confine the usage of the hardware 
resources. The tasks of the optimized graph are analyzed and 
considered to be executed on software resources if the total 
software computation time of a task does not exceed the 
hardware computation bottleneck obtained earlier. The 
resultant graph is a combination of hardware and software tasks 
that need to be executed on the platform. For example, Figure 3 
represents the resultant graph after applying the algorithm on 
the given application graph. The values in brackets [] and () 
denotes computation load [thwcomp, tswcomp] and communication 
load in cycles, respectively. This graph contains set of tasks at 
each node, like, tasks (0, 2, 4, 7) on a, (1, 3) on b, (5, 8) on c, (6) 
on d and (9) on e. 

 
4.2 Mapping Algorithm 

The resultant graph is then mapped on the MPSoC using the 
technique described in Algorithm 2. The initial node is mapped 
on the appropriate PE (hardware or software), as obtained from 
previous algorithm. The other nodes are requested to be 
mapped when a communication to them is required. In Figure 
3, when the initial node (a) is mapped, it requests its 
communicating slave nodes (b, c & d) and their mapping is 
found on the nearest possible PE. After mapping nodes b, c and  

Algorithm 2: Mapping 

Input: Optimized ATG(T,E) , AG(P,C) 
Output:  mpg  
(1) Map initial node at appropriate PE. 
(2)   Request communicating slave nodes. 
(3)   Requested nodes are mapped at minimum hop distance  

   w.r.t. to their master node 
(4) Repeat steps 2 to 3 till all tasks are mapped. 

d, their slave nodes e is requested and its mapping is found.The 
data transfer between the nodes start when they are mapped. 
 
5. Experiments and Results 

The experimental setup used is similar to the simulation 
platform described in [16]. Experiments are performed using 
Model-Sim co-simulation (System-C for applications and 
RTL-VHDL for NoC). System-C has been used for modelling 
the processing elements with the help of two threads. One 
thread for the Controller Processor named CONthread and one 
for the rest of the PEs named TSKthread. The CONthread 
manages the task configuration, task scheduling, task 
placement and resource management. On the other hand, the 
TSKthread describes implementation behavior of PEs in terms 
of computation time and communication latency for each task 
as presented in a configuration file. 

The evaluated scenarios include multiple random, pipeline & 
tree like application having (i) 5 tasks, (ii) 10 tasks and (iii) 15 
tasks. A 6×6 NoC-based MPSoC is considered, as modeled in 
Figure 2. Initial task acts as the manager of application and the 
PE reserved for initial task is pre-defined. We have varied the 
number of times an application has been executed. 
 
5.1 Total Execution Time 

The total execution time comprises of the time employed in 
configuration, optimization, mapping and communication 
overhead. The communication time dominates the total 
execution time and is greatly reduced by our proposed 
algorithm resulting in overall execution time reduction. 

The comparison between total execution time when 
Communication-aware Nearest Neighbor (CNN) heuristic 
proposed in [7] and our proposed algorithm are employed is 
shown in Figure 4 (a). It clearly shows that our algorithm 
performs better as the complexity of the application increases. 

 
5.2 Energy Consumption  

The energy model as described in [7] has been employed in 
our simulation. Total energy consumption is the sum of 
communication and computation energy, i.e., energy consumed 
in data transfer from source PE to destination PE and the energy 
consumed in processing of the data at destination PE, 
respectively. 

Etotal = Ecomp + Ecomm      (1) 

Figure 4(b) shows that the energy consumption from the 
mapping obtained by CNN is higher that our proposed 
algorithm. Our algorithm efficiently targets the communication 
intensive edges and attempts to remove such overheads, 
thereby resulting in higher energy efficiency. 
 
5.3 Resource Optimization 

The percentage decrease in the number of PEs (hardware or 
software) utilized by an application on the MPSoC measures 
the resource optimization. Our proposed algorithm tries to 
efficiently decrease the number of hardware and software
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Figure 4: Overall Execution Time, Energy Consumption and Resource Optimization for CNN and Proposed Heuristics for the evaluated scenarios. 

resources used by the application and employs a fair 
distribution of computation load among several PEs. It is 
observed that Figure 4(c) shows savings in resource usage by 
our approach when compared to CNN for different evaluated 
scenarios. Applications with 15 tasks show an improvement of 
33.33% and 40.00% over the CNN, for hardware and software 
resources, respectively. Table 1 show the distribution of 
computation load among several PEs. It indicates that hardware 
resources in CNN are lightly loaded along with highly uneven 
distribution of load among PEs. Our algorithm results in 
efficient utilization of hardware and software resources when 
compared to CNN.  

 

 
Table 1:  Computation Load Distribution for Applications  

with 15 and 20 Tasks. 
 
6. Conclusions 
   This paper details our proposed algorithm for run-time 
mapping of applications onto 6×6 NoC-based Heterogeneous 
MPSoC. The proposed heuristic facilitates the execution of 
computation intensive tasks on RAs providing significant 
improvement in total execution time, resource optimization and 
energy consumption when compared to state-of-the-art 
run-time mapping heuristic. The improvements are clearly 
enunciated in the experiments and results section. Our future 
scope includes evaluation of real-time benchmarks on the 
MPSoC platform and to incorporate task migration when a 
performance bottleneck is detected in order to improve the 
performance. 
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