

Abstract
 The rapid increase in the complexity of real-life applications
has led to the perpetual demand of refined architectural
designs. Multiprocessor systems-on-chip (MPSoC) emerges as
one of the possible solution for satiating such enormous
computational needs. These MPSoCs are employed with
Network-On-Chip (NoC) interconnect for power efficient and
scalable inter-communication required between processors.
Mapping parallelized tasks of applications onto these MPSoCs
is the next gigantic problem, which can be done either at
design-time or at run-time. However, design-time strategies
may sometimes provide a more optimal mapping but they are
restricted to predefined set of applications and seem incapable
of run-time resource management. On the contrary, run-time
mapping techniques overcome this limitation by determining
the state of the platform and incorporating resource
management before mapping. This paper describes a heuristic
for run-time mapping of parallelized tasks of an application
considering efficient computation, communication and
resource utilization as the main parameters for optimization.

Keywords: Heterogeneous architectures, Network-on-Chip (NoC),
MPSoC design, mapping heuristics.

1. Introduction

The era of employing single general purpose processors to
handle entire computational complexity of an application has
come to an end. Earlier, it was feasible for applications having
smaller scope and less complexity but presently, due to huge
advancement in every sphere of technology, the complexity of
applications has surpassed the capabilities of single processor.
However, advancement in Nanotechnology paved a way to
fulfill this overwhelming need for computational complexity by
employing concurrently working multiple processors on a
single chip referred as MPSoC [1]. MPSoCs further arise need
for efficient inter-communication between various processing
elements (PEs), thereby, making previous communication
architectures i.e. shared buses, dedicated point-to-point
connections inadequate. However, Network-on-Chip (NoC)
architecture is presently the most promising candidate that
interconnects these PEs through a configurable mesh of on-chip
connections in a power efficient and highly scalable manner
[2]. The data communication among interconnected PEs is
done through multiple point-to-point data links controlled by
switches. MPSoCs may either consist of identical PEs referred
as homogeneous or combination of different types of PEs
referred as heterogeneous. NoCs can be used to realize these
MPSoCs by interconnecting several types of PEs i.e. General

Purpose Processors (GPPs), Digital Signal Processors (DSPs),
intellectual property cores (IPs), FPGA fabric tiles, Instruction
Set Processors (ISPs) and specialized memories on a single
chip in order to accomplish high computation performance and
energy efficiency [4]. The reported literature provides several
MPSoC architecture models [18, 19]. In [18], eight
floating-point units and one manager processor have been
proposed for heterogeneous MPSoC by combined efforts of
IBM, Toshiba and Sony.

Due to high complexity, multimedia and networking
applications become the target applications for MPSoCs. These
applications can be represented as a conglomeration of several
computational or communication intensive tasks that are
executing in parallel. Mapping these tasks onto MPSoCs in
order to obtain high performance and enhanced resource
utilization poses to be the next gigantic problem. Mapping can
be carried out either at design-time or at run-time. Design-time
mapping techniques are more dominant in the reported
literature [3, 19, 20], where the decision for placement of tasks
onto the platform is pre-calculated. Since, the mapping is
performed without considering the current state of the platform,
therefore, these techniques are not suited for dynamic
workloads. Run-time mapping techniques overcome this
limitation of adapting to dynamic workloads and run-time
resource management by determining the state of the platform
before mapping. The primary interest for most of the existing
run-time mapping techniques is to reduce communication
overhead and increase energy efficiency. In [16], authors
propose a communication aware run-time heuristic which maps
the tasks on the fly depending upon the communication
requests and the load in the NoC links. Singh et al. [6, 7]
propose packing strategies that try to map the communicating
tasks of an application in close vicinity to each other in order to
decrease the communication latencies. These mapping
heuristics follow a localized approach and does not consider
computation load variance as a parameter for optimization
while mapping. In this paper, we present a run-time mapping
heuristic for heterogeneous MPSoCs, where each PE can
support multiple tasks. The MPSoC platform is similar to that
described in [7], which consists of two types of PEs (Instruction
Set Processors and Reconfigurable Areas). The proposed
heuristic shows significant performance improvements, higher
energy and resource utilization along with lower computation
load variance over state-of-the-art heuristics reported in
literature.

The rest of the paper is organized as follows. Section 2
provides an overview of related work. Section 3 presents the
problem definition and target architecture. Section 4 describes

Run-Time Computation and Communication Aware Mapping Heuristic for
NoC-based Heterogeneous MPSoC Platforms

 Samarth Kaushika, Amit Kumar Singha, Wu Jigangb, Thambipillai Srikanthana

a Centre for High Performance Embedded Systems, Nanyang Technological University, Singapore
b School of Computer Science and Software, Tianjin Polytechnic University, Tianjin, China

a {samarth2, amit0011, astsrikan}@ntu.edu.sg, basjgwu@gmail.com

2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming

978-0-7695-4575-2/11 $26.00 © 2011 IEEE

DOI 10.1109/PAAP.2011.32

186

2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming

978-0-7695-4575-2/11 $26.00 © 2011 IEEE

DOI 10.1109/PAAP.2011.32

203

2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming

978-0-7695-4575-2/11 $26.00 © 2011 IEEE

DOI 10.1109/PAAP.2011.32

203

2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming

978-0-7695-4575-2/11 $26.00 © 2011 IEEE

DOI 10.1109/PAAP.2011.32

203

results are presented in Section 5. In Section 6, we conclude the
paper and provide future directions.

2. Related Work

Task mapping is one of the crucial activity for obtaining high
performance, low energy consumption and efficient resource
utilization. Numerous design-time techniques have been
reported in literature, for example, [8], [9], [10] but all of these
cannot be applied for run-time mapping of multiple tasks on
MPSoC platform.

Mehran et al. [5] present a run-time heuristic in which the
communicating tasks are mapped close to each other by finding
placement in a spiral path. This Dynamic Spiral Mapping
(DSM) employs PEs arranged in 2-D mesh topology for
run-time mapping of application tasks.

Briao et al. [11] present a combination of bin-packing
algorithms along with linear clustering algorithms for dynamic
task allocation of soft real-time applications. The energy
efficiency is improved by providing a low-power mode for idle
processors and reducing the operating voltage when
processor’s maximum performance is not required.

Schranzhofer et al. [12] presents a multiple-step strategy that
employs polynomial-time algorithm which involves finding
initial solutions followed by power constrained task remapping.
At first, linear programming relaxation generates initial
solutions for the power-aware scenario, and then the quality of
the solution is improved by task remapping.

Carvalho et al. [13], presents a detailed performance analysis
of five run-time mapping heuristics, First Free (FF), Nearest
Neighbor (NN), Minimum Maximum Channel Load (MMC),
Minimum Average Channel Load (MAC) and Path load (PL).

Nollet et al. [14] present a run-time task assignment heuristic
for mapping various tasks on an MPSoC containing FPGA
fabric tiles. The FPGA fabric tile enables the support for
configuration hierarchy that improves the quality and success
rate of task assignment. Spatial task assignment leads to
efficient usage of platform resource.

Holzenspies et al. [15] propose a run-time heuristic involving
four different steps that leads to optimized spatial mapping of
inherently parallel streaming applications on MPSoC. The
strategy involves different steps including design-time
modeling, run-time feedback analysis and spatial mapping.

Singh et al. [7] describe a run-time packing heuristic that
tries to reduce the communication overhead between the
connected tasks by mapping them on a single PE. If a single PE
cannot accommodate all connected tasks, then the heuristic
attempts to map these tasks onto PEs at minimum hop distance
with each other. Increasing energy efficiency and reducing the
NoC average channel load forms its basis. However, the
heuristic does not fully utilize the capabilities of reconfigurable
areas (RAs) present in the MPSoC by sparsely executing the
computation intensive tasks on them. Additionally, the
heuristic results in high computation load variance among
different PEs after application mapping.

3. Problem Definition
A task graph representation of an application as described in

[15] has been adapted. An application has been broken down
into cluster of communicating individual units, known as tasks,
which execute concurrently to generate output. A directed
graph ATG = (T, E) represents the task graph, where T is a set of
application tasks and E is the set of all edges in the application,
connecting the tasks and representing their communication.
Every task is considered to be executable on both software and
hardware resources, having different execution time for each
resource. The difference in execution times determines the
suitability of a task to be executed on hardware or software
resource, i.e., a hardware or software task. A task ti � T is
represented as (tid, tswcomp, thwcomp), where tid is the task identifier,
tswcomp is the task software computation load in cycles (when the
task is executed on general purpose processor) and thwcomp is the
task hardware computation load in cycles (when the task is
executed on reconfigurable area). An edge ei ��� represents the
connection between two communicating tasks and its weight is
denoted as tcomm as shown in Figure 1, which represents the data
volume for a single token to be sent between connected tasks in
terms of number of cycles taken for transfer, when full channel
bandwidth is available. The communicating tasks forms a
master-slave pair, where the master task in the task set T
executes till last token is sent to its slave task. A slave task will
start its execution once it has received a complete token from its
master task. For example, t1 is master and t2 & t3 are slaves in
Figure 1.

Figure 1: Execution Trace of Application Graph A

A directed graph AG = (P, C) represents NoC-based
heterogeneous MPSoC architecture, where P is the set of PEs
identified by its identifier pid and ci,j � C represents the physical
communication channels for interconnecting the PEs. A tile pi
� P consists of a network interface, a heterogeneous processing
element, local memory and a cache.

The proposed MPSoC architecture is an extension of the
architecture used in Carvalho [16]. In [16], each processing
node is capable of supporting only a single task. In the proposed
architecture, multiple tasks can be supported by each
processing node that has fixed area & memory. Software tasks
execute in instruction set processors (ISPs) and hardware tasks
execute in reconfigurable areas (RAs). Inclusion of RAs in the
platform provides the hardware programmability, similar to
that of general purpose processors. The platform supports
varying channel bandwidth but for evaluation purpose,
communicating tasks have been allocated full available

187204204204

Figure 2: Our 6×6 NoC based MPSoC Architecture.

channel bandwidth. The PEs are connected in 6×6 mesh
topology by a NoC as shown in Figure 2, where GPP represents
general purpose processor, RA represents reconfigurable area
and R represents router. However, we can consider mesh of
different sizes. One of the PE is used as Manager Processor that
performs task mapping, resource control, configuration and
management. Task mapping is represented by function mpg: ti
� T pi � P, that maps a task of the application to a PE in the
MPSoC architecture.

 4. Proposed Mapping Strategy

The proposed mapping strategy first performs the processing
of the given application followed by mapping on the MPSoC
platform. The processing algorithm facilitates the execution of
computation intensive tasks on RAs, thereby, improving
performance, energy efficiency and reduction in
communication overhead. It emphasizes on the excessive
utilization of RAs to their maximum capability. The proposed
mapping algorithm maps the processed application on the
MPSoC platform.

4.1 Algorithm
The proposed algorithm takes application task graph as an input
and tries to efficiently optimize the graph before actual
mapping is done on the MPSoC. The technique requires that
every task can be executed on every PE (hardware or software)
available in the MPSoC. Initially, the algorithm assumes that all
the tasks of an application should be executed on hardware
resources, i.e., RAs and hence it starts optimizing the graph
considering hardware computation load of each task. The
scheme starts by finding the most communication intensive
edges in the graph and then tries to combine the associated tasks
on the same PE. The merge is performed only when the area
restriction of the corresponding PE is satisfied, i.e., the PE must
have enough area to configure the logic for accommodating
both tasks. This merging of tasks facilitates in the reduction of
communication overhead which arises due to the transfer of
data among connected tasks. This data transfer over the NoC

channel not only enhances the execution time but also increases
the energy consumption. Hence, removing communication
bottlenecks leads to improved performance. The effectiveness
of the algorithm can be observed by analyzing the execution
trace of the application graph as shown in Figure 1, where ri
represents the trace for hardware computation time of each task

Algorithm 1 : Processing

Input: ATG(T,E)
Output: Optimized ATG(T,E)
(1) do{
(2) Find task ti ��T having maximum hardware computation

 load (max_phw_load) from ATG (T,E).
(3) Find edge ei � E having maximum communication load

 (max_cload) from ATG (T,E).
(4) if (max_phw_load < max_cload) then
(5) Find hardware computation and communication

 load of connecting tasks tp & tq of the edge ei � E ,
 i.e., phw_load(tp) and phw_load(tq)

(6) if (phw_load(tp) + phw_load(tq) <= max_cload) then
(7) Merge tp and tq to a single node if their area

 requirements are satisfied on a single
 PE location and update ATG(T,E).

(8) else
(9) break; //goto next phase of optimization.
(10) end if
(11) end if
(12) while(max_cload>max_phw_load)
(13) Find ti and tj with Min (phw_load(ti) + phw_load(tj)) < max_pload)

from updated ATG(T,E).
(14) if (ti & tj are communicating tasks) then
(15) Merge ti and tj to a single node if the area requirements

are satisfied on a single PE and update ATG(T,E).
(16) else
(17) Find ei & ej � E having minimum communication load.
(18) if (cload(ei) + cload(ej) < max_phw_load) then
(19) Merge ti and tj to a single node if their area

requirements are satisfied on a single PE and update
ATG(T,E)

(20) else goto (13) to find next minimum combined load.
(21) repeat steps (13) to (18) till condition at (13) is satisfied.
(22) Find task ti ��T in the updated graph.
(23) if(sum of psw_load of individual merged node) <

max_phw_load)
(24) Update ATG(T,E) with ti as a software resource having

 computation load = sum of psw_load of individual
 merged node.

(25) repeat steps (22) to (24) till condition at (23) is satisfied

188205205205

Figure 3: Optimized Application obtained after processing

ti � Ti and wi represents the trace for communication time of
each edge ei � Ei. The figure clearly delineates the inherent
parallelism that can be tapped in order to gain considerable
performance improvements. For example, if tasks t1 and t3 are
merged on a single PE, then this will remove the bottleneck e2,
thereby shrinking the execution trace and leading to lower
overall execution time. The resulted optimized application
graph consists of hardware computation bottleneck as the graph
has been obtained considering the hardware computation time
of each task. The limited number of hardware resources on the
platform restricts the possibility of mapping this optimized
graph onto MPSoC. Therefore, depending upon the hardware
computation bottleneck, we confine the usage of the hardware
resources. The tasks of the optimized graph are analyzed and
considered to be executed on software resources if the total
software computation time of a task does not exceed the
hardware computation bottleneck obtained earlier. The
resultant graph is a combination of hardware and software tasks
that need to be executed on the platform. For example, Figure 3
represents the resultant graph after applying the algorithm on
the given application graph. The values in brackets [] and ()
denotes computation load [thwcomp, tswcomp] and communication
load in cycles, respectively. This graph contains set of tasks at
each node, like, tasks (0, 2, 4, 7) on a, (1, 3) on b, (5, 8) on c, (6)
on d and (9) on e.

4.2 Mapping Algorithm

The resultant graph is then mapped on the MPSoC using the
technique described in Algorithm 2. The initial node is mapped
on the appropriate PE (hardware or software), as obtained from
previous algorithm. The other nodes are requested to be
mapped when a communication to them is required. In Figure
3, when the initial node (a) is mapped, it requests its
communicating slave nodes (b, c & d) and their mapping is
found on the nearest possible PE. After mapping nodes b, c and

Algorithm 2: Mapping

Input: Optimized ATG(T,E) , AG(P,C)
Output: mpg
(1) Map initial node at appropriate PE.
(2) Request communicating slave nodes.
(3) Requested nodes are mapped at minimum hop distance

 w.r.t. to their master node
(4) Repeat steps 2 to 3 till all tasks are mapped.

d, their slave nodes e is requested and its mapping is found.The
data transfer between the nodes start when they are mapped.

5. Experiments and Results

The experimental setup used is similar to the simulation
platform described in [16]. Experiments are performed using
Model-Sim co-simulation (System-C for applications and
RTL-VHDL for NoC). System-C has been used for modelling
the processing elements with the help of two threads. One
thread for the Controller Processor named CONthread and one
for the rest of the PEs named TSKthread. The CONthread
manages the task configuration, task scheduling, task
placement and resource management. On the other hand, the
TSKthread describes implementation behavior of PEs in terms
of computation time and communication latency for each task
as presented in a configuration file.

The evaluated scenarios include multiple random, pipeline &
tree like application having (i) 5 tasks, (ii) 10 tasks and (iii) 15
tasks. A 6×6 NoC-based MPSoC is considered, as modeled in
Figure 2. Initial task acts as the manager of application and the
PE reserved for initial task is pre-defined. We have varied the
number of times an application has been executed.

5.1 Total Execution Time

The total execution time comprises of the time employed in
configuration, optimization, mapping and communication
overhead. The communication time dominates the total
execution time and is greatly reduced by our proposed
algorithm resulting in overall execution time reduction.

The comparison between total execution time when
Communication-aware Nearest Neighbor (CNN) heuristic
proposed in [7] and our proposed algorithm are employed is
shown in Figure 4 (a). It clearly shows that our algorithm
performs better as the complexity of the application increases.

5.2 Energy Consumption

The energy model as described in [7] has been employed in
our simulation. Total energy consumption is the sum of
communication and computation energy, i.e., energy consumed
in data transfer from source PE to destination PE and the energy
consumed in processing of the data at destination PE,
respectively.

Etotal = Ecomp + Ecomm (1)

Figure 4(b) shows that the energy consumption from the
mapping obtained by CNN is higher that our proposed
algorithm. Our algorithm efficiently targets the communication
intensive edges and attempts to remove such overheads,
thereby resulting in higher energy efficiency.

5.3 Resource Optimization

The percentage decrease in the number of PEs (hardware or
software) utilized by an application on the MPSoC measures
the resource optimization. Our proposed algorithm tries to
efficiently decrease the number of hardware and software

189206206206

Figure 4: Overall Execution Time, Energy Consumption and Resource Optimization for CNN and Proposed Heuristics for the evaluated scenarios.

resources used by the application and employs a fair
distribution of computation load among several PEs. It is
observed that Figure 4(c) shows savings in resource usage by
our approach when compared to CNN for different evaluated
scenarios. Applications with 15 tasks show an improvement of
33.33% and 40.00% over the CNN, for hardware and software
resources, respectively. Table 1 show the distribution of
computation load among several PEs. It indicates that hardware
resources in CNN are lightly loaded along with highly uneven
distribution of load among PEs. Our algorithm results in
efficient utilization of hardware and software resources when
compared to CNN.

Table 1: Computation Load Distribution for Applications

with 15 and 20 Tasks.

6. Conclusions
 This paper details our proposed algorithm for run-time
mapping of applications onto 6×6 NoC-based Heterogeneous
MPSoC. The proposed heuristic facilitates the execution of
computation intensive tasks on RAs providing significant
improvement in total execution time, resource optimization and
energy consumption when compared to state-of-the-art
run-time mapping heuristic. The improvements are clearly
enunciated in the experiments and results section. Our future
scope includes evaluation of real-time benchmarks on the
MPSoC platform and to incorporate task migration when a
performance bottleneck is detected in order to improve the
performance.

7. References
[1] A. Jerraya et al., Guest editors’ introduction: multiprocessor

systems-on-chips, Computer 38 (7) (2005) 36–40.

[2] J. Henkel et al., On-chip networks: a scalable, communication-centric
embedded system design paradigm, in: Proceedings of VLSI Design,
2004, p.845

[3] M . Branca et al., Evolutionary algorithms for the mapping of
pipelined applications onto heterogeneous embedded systems, in:
Proceedings of theGen. and Evolutionary Comp., 2009, pp.
1435–1442.

[4] Smit, L.; et al. Run-time mapping of applications to a heterogeneous
reconfigurable tiled system on chip architecture. FPL, 2004.

[5] A.Mehran, A. Khademzadeh, S. Saeidi, DSM: A Heuristic Dynamic
Spiral Mapping algorithm for network on chip, IEICE Electronics
Express 5 (13) (2008) 464–471.

[6] A.K.Singh et al., “Efficient Heuristics for Minimizing
Communication Overhead in NoC-based Heterogeneous MPSoC
Platforms”. 2009 IEEE International Symposium on Rapid System
Prototyping, pp.55-60.

[7] A. K. Singh et al., “Communication-aware heuristics for run-time
task mapping on noc-based mpsoc platforms,” Journal of Systems
Architecture,vol. 56, no. 7, 2010, pp. 242-255.

[8] D. Wu, B. M. Al-Hashimi, P. Eles, Scheduling and mapping of
conditional task graphs for the synthesis of low power embedded
systems, in: DATE 2003, pp. 90–95.

[9] S. Murali, M. Coenen, A. Radulescu, K. Goossens, G. De Micheli, A
methodology for mapping multiple use-cases onto networks on chips,
in: DATE ’2006, pp. 118–123.

[10] C. Marcon et al., Time and energy efficient mapping of embedded
applications onto noc, in: Proceedings of ASP-DAC, 2005, pp.
33–38.

[11] E. W. Briao, D. Barcelos, F. R. Wagner, Dynamic task allocation
strategies in mpsoc for soft real-time applications, in: DATE, 2008,
pp. 1386–1389.

[12] A. Schranzhofer et al., Power-aware mapping of probabilistic
applications onto heterogeneous mpsoc platforms, in: Proceedings of
RTAS 2009, pp. 151–160.

[13] Carvalho, E.; et al. Heuristics for dynamic task mapping in
NoC-based heterogeneous MPSoCs. RSP, 2007.

[14] V. Nollet, P. Avasare, H. Eeckhaut, D. Verkest, H. Corporaal,
Run-time management of a mpsoc containing fpga fabric tiles, IEEE
Trans. Very Large Scale Integr. Syst. 16 (1) (2008) 24–33.

[15] P. K. F. H¨olzenspies, J. L. Hurink, J. Kuper, G. J. M. Smit, Run-time
spatial mapping of streaming applications to a heterogeneous
multiprocessor system-on-chip (mpsoc), in: DATE 2008, pp.
212–217.

[16] Carvalho, E.; Moraes, F. Congestion-aware task mapping in
heterogeneous MPSoCs. System-on-Chip (SoC), 2008, pp. 1–4.

[17] S. Bell et al., Tile64tm processor: a 64-core soc with mesh
interconnect, in: ISSCC, 2008, pp. 88–90.

[18] M. Kistler et al., Cell multiprocessor communication network: built
for speed, IEEE Micro 26 (3) (2006) 10–23.

[19] L.-Y. Lin et al., Communication-driven task binding for
multiprocessor with latency insensitive network-on-chip, in:
Proceedings of ASP-DAC, 2005, pp. 39–44.

[20] L. Thiele et al., Mapping applications to tiled multiprocessor
embedded systems, in: Proceedings of ACSD,2007, pp. 29–40.

0

100

200

300

400

5 10 15

To
ta

l E
xe

cu
ti

on
 T

im
e

(C
lo

ck
 C

yc
le

s
x

10
00

)

0

20

40

60

5 10 15

En
er

gy
 x

 (1
00

0
m

J)

0
10
20
30
40
50

Hardware Software

%
 S

av
in

g
in

 P
E

us
ed

as
 c

om
pa

re
d

to
 C

N
N

(a) Execution Time (b) Energy Consumption (c) Resource Optimization
No. of Tasks No. of Tasks

 Software
 Resources

 CNN Proposed Algorithm 5 Tasks 10 Tasks 15 Tasks

 Hardware
 Resources

190207207207

